yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing graphs of exponential functions | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have the graph of an exponential function here, and the function is m of x. What I want to do is figure out what m of 6 is going to be equal to. And like always, pause the video and see if you can work it out.

Well, as I mentioned, this is an exponential function, so m is going to take the form. Let me write it this way: m of x is going to take the form a times r to the x power, where a is our initial value and r is our common ratio. Well, the initial value is pretty straightforward; it's just going to be what m of 0 is. So a is going to be equal to m of 0.

We can just look at this graph. When x is equal to 0, the function is equal to 9. So it's equal to 9. Now we need to figure out our common ratio. Let me set up a little bit of a table here just to help us with this. So let me draw some straight lines.

This is x and m of x. We already know that when x is 0, m of x is equal to 9. We also know when x is—let's see—when x is 1, when x is 1, m of x is 3. So when we increase our x by one, what happened to our m of x? Well, what did we have to multiply it by? Well, to go from 9 to 3, you multiplied by one-third.

So that's going to be our common ratio. In fact, if we wanted to care what m of 2 is going to be, we would multiply by one-third again, and m of 2 should be equal to 1. We see that right over here; m of 2 is indeed equal to 1. So our common ratio, our common ratio right over here is equal to one-third.

Now, m of x we can write as m of x is going to be equal to our initial value a, which we already figured out as a. A is equal to 9, so it's going to be 9 times our common ratio, times our common ratio one-third to the x power.

I was able to figure out the formula for our definition for f of x, but that's not what I wanted; I just wanted to figure out what m of 6 is going to be. So we can write down that m of 6 is going to be 9 times one over three to the sixth power.

Let's see, that is going to be equal to—that's the same thing as 9 times—well, 1 to the sixth is just 1. It's going to be 1 to the sixth, which is just 1 over three to the sixth power. Now what is three to the sixth power? In fact, I could even simplify this a little bit more. I could recognize that 9 is 3 squared, so I could say this is going to be 3 squared over 3 to the sixth.

3 squared over 3 to the sixth, and then I could tackle this a couple of ways. I could just divide the numerator and the denominator by 3 squared, in which case I would get 1 over 3 to the fourth power. Or another way to think about it, this would be the same thing as 3 to the 2 minus 6 power, which is the same thing as 3 to the negative 4 power, which, of course, is the same thing as 1 over 3 to the fourth.

So what's three to the fourth? So three squared is nine, three to the third is 27, three to the fourth is 81. So this is going to be equal to one over eighty-one. m of six is equal to one over eighty-one.

We could also have done that if we kept going by our table. m of 3 multiplied by one-third is going to be one-third. m of 4 multiplied by one-third again is going to be one-ninth. And we could say m of 5 is going to be, and m of 6 is going to be one-eighty-first.

More Articles

View All
Lecture 3 - Before the Startup (Paul Graham)
That short. Like, long introductions are no good. Sam knows. Alright, ready, everybody? I’m not gonna ask if the mic is working like in every talk so far. I’ll just assume it’s working. No! No, fuck! All right, well make it work somebody. It works, …
The Lies That Keep You Unhappy
And that number can be addicting. It gets to the point to where we stop saying what we really want to say and instead start saying the things we know will get us the most likes. Before you know it, you’re posting certain thoughts, photos, and writing spec…
For the Love of the Climb | Explorer
[Music] I’ve always equated climbing, Alpine climbing, being in the mountains to, it sounds a little silly, but being in love. Sometimes it’s very uncomfortable; it makes you do crazy things. It can be very, very challenging, but at the end of the day, it…
An AI Primer with Wojciech Zaremba
Hey, today we have voice check Zaremba, and we’re going to talk about AI. So, Voiture, could you give us a quick background? I’m a founder at OpenAI, and I’m working on robotics. I think that deep learning and AI is a great application for robotics. Prio…
Give to Khan Academy today!
Hi, I’m Sal Khan, founder of Khan Academy, and with your support I’m excited to say: Here’s just a few of the things that we’ve been able to accomplish together. We now cover a wide range of academic subjects including history, science, grammar, and much…
Safari Live - Day 65 | Nat Geo WILD
Welcome back everyone! Sorry about the gremlins that have beset us here in the Morrow for the last little while, but it seems like we’re back and we’re still with this incredible scene playing out in this lagoon. We’ve got some more hyenas that arrived. …