yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying complex numbers graphically example: -3i | Precalculus | Khan Academy


2m read
·Nov 10, 2024

Suppose we multiply a complex number z by negative 3i, and they show us z right over here. Plot the point that represents the product of z and negative 3i. So pause this video and see if you can work through that.

All right, now let's do it step by step. First, I want to think about where 3z would be. Well, 3z would have the same angle as z, but its absolute value, or its modulus, would be three times larger. So you'd be going in this direction, but it'd be three times further. So that's one times its modulus, that's two times its modulus, that's three times its modulus, or it's three times its absolute value. So 3z would be right over here.

Now, what about negative 3z? Well, if you multiply it by a negative, it's just going to flip it around. You could think about it as flipping it at 180 degrees, but it's going to have the same modulus. So instead of being right over here at 3 in this direction, it's going to be 1, 2, 3 in this direction, right over here. So that is negative 3z.

Now, perhaps most interestingly, what happens when you multiply by i? So if we have negative 3i times z, now which is exactly what they want us to figure out, well let's think about what happens if you had 1. If you multiplied it by i, so 1 times i becomes 1i, so it goes over there. What if you then took 1i and multiplied it by i? Well then you have negative 1. What if you took negative 1 and you multiplied it by i? Well then now you have negative 1i.

So notice every time we multiply by i, we are rotating by 90 degrees. So over here, if we take negative 3z and multiply it by i, you're just going to rotate 90 degrees, and you're going to get right over there. So this is negative 3i times z, which is exactly what we were looking for.

More Articles

View All
Robinhood Just Got Cancelled
What’s up, you guys? It’s Graham here! So, you might have recently noticed that something has been missing from the channel lately, and no, it’s not the free stock you can get worth all the way up to $50 down below in the description. Instead, it’s some …
Setting Up Camp in a Tree | The Great Human Race
2.4 million years ago, before humans had weapons or fire, Homo habilis retreated into the safety of trees to escape predators at night. Sounds almost like a hyena. “We have like minutes left really. I think it’s high enough.” “I mean, are you stable tho…
Media as a linkage institution | Political participation | US government and civics | Khan Academy
You have a government and you also have the people that are governed. In previous videos, we talked about this idea of linkage institutions, which are institutions that connect the government to the people and the people to the government. So, people know…
Multiplying by tens word problem | Math | 3rd grade | Khan Academy
A volunteer group is planting trees at five different parks. They planted 90 trees at each park. How many trees did the group plant in all? So here’s what we know: we know that this group went to five different parks, very kind of them, and planted 90 tr…
Finding missing side when given area | Math | 3rd grade | Khan Academy
The picture has an area of 80 square cm. What is the width of the picture? So here’s our picture: this super fun giraffe listening to music. Our picture’s shape is a rectangle, and we’re asked to find the width of that rectangle. Well, maybe we don’t kn…
Derivatives of tan(x) and cot(x) | Derivative rules | AP Calculus AB | Khan Academy
We already know the derivatives of sine and cosine. We know that the derivative with respect to x of sine of x is equal to cosine of x. We know that the derivative with respect to x of cosine of x is equal to negative sine of x. So, what we want to do in…