yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying complex numbers graphically example: -3i | Precalculus | Khan Academy


2m read
·Nov 10, 2024

Suppose we multiply a complex number z by negative 3i, and they show us z right over here. Plot the point that represents the product of z and negative 3i. So pause this video and see if you can work through that.

All right, now let's do it step by step. First, I want to think about where 3z would be. Well, 3z would have the same angle as z, but its absolute value, or its modulus, would be three times larger. So you'd be going in this direction, but it'd be three times further. So that's one times its modulus, that's two times its modulus, that's three times its modulus, or it's three times its absolute value. So 3z would be right over here.

Now, what about negative 3z? Well, if you multiply it by a negative, it's just going to flip it around. You could think about it as flipping it at 180 degrees, but it's going to have the same modulus. So instead of being right over here at 3 in this direction, it's going to be 1, 2, 3 in this direction, right over here. So that is negative 3z.

Now, perhaps most interestingly, what happens when you multiply by i? So if we have negative 3i times z, now which is exactly what they want us to figure out, well let's think about what happens if you had 1. If you multiplied it by i, so 1 times i becomes 1i, so it goes over there. What if you then took 1i and multiplied it by i? Well then you have negative 1. What if you took negative 1 and you multiplied it by i? Well then now you have negative 1i.

So notice every time we multiply by i, we are rotating by 90 degrees. So over here, if we take negative 3z and multiply it by i, you're just going to rotate 90 degrees, and you're going to get right over there. So this is negative 3i times z, which is exactly what we were looking for.

More Articles

View All
Negative definite integrals | Integration and accumulation of change | AP Calculus AB | Khan Academy
We’ve already thought about what a definite integral means. If I’m taking the definite integral from ( a ) to ( b ) of ( f(x) \, dx ), I can just view that as the area below my function ( f ). So, if this is my y-axis, this is my x-axis, and ( y ) is equ…
Card Sharks of Vegas | Underworld, Inc.
Armed robbers can score big at the casinos, but with security being so tight, they can’t score often. But card shark Ace Face, all right, and his partner Bim have a very different approach: two-deck handheld game. Huh, yeah, that looks pretty good. Okay,…
Psychology of money part 1 | Financial goals | Financial Literacy | Khan Academy
Hi everyone! So here, what we’re going to do in this video is talk about the psychology of money. I’m going to talk about different types of things that probably all of us have fallen into at one point or another, and just think about why they’re happenin…
BAT Flight vs BIRDS, with SLOWMO, robots, swimming and treadmills - Smarter Every Day 87
Alright, so several months ago we took a deep dive and learned exactly how bird wings work. And it was pretty cool, so go check it out if you want. But, a couple of you had the audacity to ask me how bat wings work, and I didn’t know the answer. So you h…
FIRST Photo on the INTERNET ... and other things too.
Hey, Vsauce. Michael here. And this week I am in San Francisco. I just flew in a couple of days ago, so I’ve been busy traveling, but new episodes of regular shows like IMG! and DONG are coming soon. But in the meantime, rather than post nothing, I figur…
Methods for subracting 3 digit numbers
Hello! In this video, we’re going to think about techniques for subtracting three-digit numbers. So, let’s say we wanted to figure out what 357 minus 156 is. Pause this video and see if you can somehow figure this out. You don’t have to be able to, becaus…