yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting roots as rational exponents | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

We're asked to determine whether each expression is equivalent to the seventh root of v to the third power. And like always, pause the video and see if you can figure out which of these are equivalent to the seventh root of v to the third power.

Well, a good way to figure out things that are equivalent is to just try to get them all in the same form. So the seventh root of v to the third power, v to the third power, the seventh root of something is the same thing as raising it to the one-seventh power. So this is equivalent to v to the third power raised to the one-seventh power.

If I raise something to an exponent and then raise that to an exponent, well, then that's the same thing as raising it to the product of these two exponents. So this is going to be the same thing as v to the 3 times 1/7 power, which of course is 3/7. So we've written it in multiple forms. Now let's see which of these match.

So v to the third to the one-seventh power, well that was the form that we have right over here, so that is equivalent to v to the three-sevenths. That's what we have right over here, so that one is definitely equivalent. Now let's think about this one: this is the cube root of v to the seventh. Is this going to be equivalent?

Well, one way to think about it is this is going to be the same thing as v to the one-third power. Actually, no, this wasn't the cube root of v to the seven; this was the cube root of v and that to the seventh power. So that's the same thing as v to the one-third power and then that to the seventh power.

So that is the same thing as v to the seven-thirds power, which is clearly different than v to the three-sevenths power. So this is not going to be equivalent for all v's for which this expression is defined.

Let's do a few more of these or similar types of problems dealing with roots and fractional exponents. The following equation is true for g greater than or equal to zero and d is a constant. What is the value of d?

Well, if I'm taking the sixth root of something, that's the same thing as raising it to the one-sixth power. So the sixth root of g to the fifth is the same thing as g to the fifth raised to the one-sixth power.

Just like we just saw in the last example, that's the same thing as g to the 5 times 1/6 power. This is just our exponent properties: if I raise something to an exponent and then raise that whole thing to another exponent, I can just multiply the exponents. So that's the same thing as g to the 5/6 power, and so d is 5/6. The sixth root of g to the fifth is the same thing as g to the five-sixths power.

Let's do one more of these. The following equation is true for x greater than zero and d is a constant. What is the value of d?

All right, this is interesting, and I forgot to tell you in the last one, but pause this video as well and see if you can work it out on—or pause for this question as well and see if you can work it out.

Well here, let's just start rewriting the root as an exponent. I can rewrite the whole thing; this is the same thing as 1 over, instead of writing the seventh root of x, I'll write x to the 1/7 power is equal to x to the d.

If I have 1 over something to a power, that's the same thing as that something raised to the negative of that power. So that is the same thing as x to the negative 1/7 power, and so that is going to be equal to x to the d.

So d must be equal to—d must be equal to negative 1/7. So the key here is when you're taking the reciprocal of something, that's the same thing as raising it to the negative of that exponent. Another way of thinking about it is you could view this as x to the one-seventh to the negative one power, and then if you multiply these exponents, you get what we have right over there. But either way, d is equal to negative 1/7.

More Articles

View All
How To Build Discipline
Self-discipline is your ability to do the uncomfortable but important things when nobody’s forcing you to do it. The last part, that no one forcing you, is the thing that people struggle with the most. When you were a kid, your parents told you what to do…
What the Apollo Missions Meant | APOLLO - Missions to the Moon
NARRATOR: The moon is a necessary first step for exploration of the planets. To fly them there and return them safely in this decade is the goal of NASA’s project Apollo. The early missions of Mercury and the experience from Gemini have brought this count…
Khan Stories: Brooke Hogan
We’re gonna go ahead and grab our Chrome Books, we’re gonna log in. Good morning. Good morning. My name is Brooke Hogan, I’ve been teaching for nine years. I teach seventh grade math, science, and health. I try and get to know each and every one of m…
Refraction of light | Physics | Khan Academy
We see incredible optical illusions all around us almost every day, right? But what causes them? One of the main reasons is that when light goes from one medium to another, like say from vacuum or air into glass, it changes its speed, because of which it …
How to sell a private jet!
8:00 a.m. Tuesday morning. Our business is truly international across every time zone. During those few hours I spend sleeping, deals, texts, emails, and calls build up, so I spend most of every morning catching up. Today we’re on our way to the Air Chart…
Frames of reference | Movement and forces | Middle school physics | Khan Academy
When we make new discoveries, we need to be able to share them with others. The first thing we have to do is make sure everyone is on the same page. We do this by using units and frames of reference, which are also called reference frames. We talk about u…