yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding the mean and standard deviation of a binomial random variable | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

We're told a company produces processing chips for cell phones at one of its large factories. Two percent of the chips produced are defective in some way. A quality check involves randomly selecting and testing 500 chips. What are the mean and standard deviation of the number of defective processing chips in these samples?

So, like always, try to pause this video and have a go at it on your own, and then we will work through it together.

All right, so let me define a random variable that we're going to find the mean and standard deviation of, and I'm going to make that random variable the number of defective processing chips in a 500 chip sample. So let's let X be equal to the number of defective chips in a 500 chip sample.

So, the first thing to recognize is that this will be a binomial variable. This is binomial. How do we know it's binomial? Well, it's made up of 500; it's a finite number of trials, right over here. The probability of getting a defective chip—you could do this as a probability of success. It's a little bit counterintuitive that a defective chip would be a success, but we're summing up the defective chips, so we would view the probability of a defect—or, I should say, defective chip—it is constant across these 500 trials.

And we will assume that they are independent of each other. 0.02. You might be saying, "Hey, well, are we replacing the chips before or after?" But we're assuming it's from a functionally infinite population. Or, if you want to make it feel better, you could say, "Well, maybe you are replacing the chips." They're not really telling us that right over here. So, we'll assume that each of these trials are independent of each other and that the probability of getting a defective chip stays constant here.

And so, this is a binomial random variable or binomial variable. We know the formulas for the mean and standard deviation of a binomial variable, so the mean— the mean of X, which is the same thing as the expected value of X, is going to be equal to the number of trials (n) times the probability of a success on each trial (p).

So what is this going to be? Well, this is going to be equal to—we have 500 trials, and then the probability of success on each of these trials is 0.02. So it's 500 times 0.02. And what is this going to be? 500 times two hundredths is going to be—it's going to be equal to 10. So that is your expected value of the number of defective processing chips or the mean.

Now, what about the standard deviation? So the standard deviation of our random variable X—well, that's just going to be equal to the square root of the variance of our random variable X. So I could just write it—I'm just writing it all the different ways that you might see it because sometimes the notation is the most confusing part in statistics.

And so this is going to be the square root of what? Well, the variance of a binomial variable is going to be equal to the number of trials times the probability of success in each trial times one minus the probability of success in each trial.

And so in this context, this is going to be equal to—you’re going to have the 500—500 times 0.02. 0.02 times 1 minus 0.02 is 0.98, so times 0.98. And all of this is under the radical sign. I didn't make that radical sign long enough.

And so what is this going to be? Well, let's see. 500 times 0.02, we already said that this is going to be 10. 10 times 0.98, this is going to be equal to the square root of 9.8. So it's going to be, I don't know, three point something. If we want, we can get a calculator out to feel a little bit better about this value.

So I'm going to take 9.8 and then take the square root of it, and I get 3.5. Round to the nearest hundredth: 3.13. So this is approximately 3.13 for the standard deviation. If I wanted the variance, it would be 9.8, but they ask for the standard deviation, so that's why we got that. All right, hopefully, you enjoyed that.

More Articles

View All
What Makes Gum Chewy? | Ingredients With George Zaidan (Episode 5)
What’s in gum that makes it so chewy? How does this chewy stuff work? And can I make it from scratch? Inside your ingredients, chewing gum is one of the weirdest things we put in our mouths. I mean, think about your mouth for a second. Your teeth are har…
How Bats Can Transmit Viruses | Virus Hunters
You’re standing at this abandoned mine. You can only see maybe two or three meters in before it’s entirely black. But in the kind of haze, you can see the kind of decrepit, old bits of previous mining industry and overwhelmingly, the squawk of all these b…
LC natural response intuition 2
We’ve been working on an intuitive description of the natural response of an LC circuit, and in the last video, we got everything set up. Now we’re ready to close the switch. Let’s close our switch, and now our switch is closed again. What happens? Well,…
"The Biggest Mistake I've Ever Made" | Shark Tank's Kevin O'Leary & "The Mooch" Anthony Scaramucci
What do you tell them about building their own net worth and how to go forward and not trip up in that aspect? So many kids come out of college $80,000 in debt and they go straight downward from there. What advice do you give young kids in terms of start…
Origins of life | Biology | Khan Academy
We have many videos on Khan Academy on things like evolution and natural selection. We think we have a fairly solid understanding of how life can evolve to give us the variety, the diversity that we’ve seen, and the complexity that we’ve seen around us. B…
RC step response 3 of 3 example
In the last video, we worked out the step response of an RC circuit, and now we’re going to look at a real example. So, this is our answer. This is the step response, the total response to our circuit to a step input. What does this look like? So, I’m go…