yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding the mean and standard deviation of a binomial random variable | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

We're told a company produces processing chips for cell phones at one of its large factories. Two percent of the chips produced are defective in some way. A quality check involves randomly selecting and testing 500 chips. What are the mean and standard deviation of the number of defective processing chips in these samples?

So, like always, try to pause this video and have a go at it on your own, and then we will work through it together.

All right, so let me define a random variable that we're going to find the mean and standard deviation of, and I'm going to make that random variable the number of defective processing chips in a 500 chip sample. So let's let X be equal to the number of defective chips in a 500 chip sample.

So, the first thing to recognize is that this will be a binomial variable. This is binomial. How do we know it's binomial? Well, it's made up of 500; it's a finite number of trials, right over here. The probability of getting a defective chip—you could do this as a probability of success. It's a little bit counterintuitive that a defective chip would be a success, but we're summing up the defective chips, so we would view the probability of a defect—or, I should say, defective chip—it is constant across these 500 trials.

And we will assume that they are independent of each other. 0.02. You might be saying, "Hey, well, are we replacing the chips before or after?" But we're assuming it's from a functionally infinite population. Or, if you want to make it feel better, you could say, "Well, maybe you are replacing the chips." They're not really telling us that right over here. So, we'll assume that each of these trials are independent of each other and that the probability of getting a defective chip stays constant here.

And so, this is a binomial random variable or binomial variable. We know the formulas for the mean and standard deviation of a binomial variable, so the mean— the mean of X, which is the same thing as the expected value of X, is going to be equal to the number of trials (n) times the probability of a success on each trial (p).

So what is this going to be? Well, this is going to be equal to—we have 500 trials, and then the probability of success on each of these trials is 0.02. So it's 500 times 0.02. And what is this going to be? 500 times two hundredths is going to be—it's going to be equal to 10. So that is your expected value of the number of defective processing chips or the mean.

Now, what about the standard deviation? So the standard deviation of our random variable X—well, that's just going to be equal to the square root of the variance of our random variable X. So I could just write it—I'm just writing it all the different ways that you might see it because sometimes the notation is the most confusing part in statistics.

And so this is going to be the square root of what? Well, the variance of a binomial variable is going to be equal to the number of trials times the probability of success in each trial times one minus the probability of success in each trial.

And so in this context, this is going to be equal to—you’re going to have the 500—500 times 0.02. 0.02 times 1 minus 0.02 is 0.98, so times 0.98. And all of this is under the radical sign. I didn't make that radical sign long enough.

And so what is this going to be? Well, let's see. 500 times 0.02, we already said that this is going to be 10. 10 times 0.98, this is going to be equal to the square root of 9.8. So it's going to be, I don't know, three point something. If we want, we can get a calculator out to feel a little bit better about this value.

So I'm going to take 9.8 and then take the square root of it, and I get 3.5. Round to the nearest hundredth: 3.13. So this is approximately 3.13 for the standard deviation. If I wanted the variance, it would be 9.8, but they ask for the standard deviation, so that's why we got that. All right, hopefully, you enjoyed that.

More Articles

View All
Citizens United v. Federal Election Commission | US government and civics | Khan Academy
This is Sal here with Rick Hassan, who’s a professor of law at UC Irvine School of Law specializing in election law. I’m here with Bradley Smith, who’s former chairman of the Federal Election Commission. He’s also a professor of law at Capital University …
If It’s Broke, Fix It | Port Protection
Salmon’s Stewart will have to clear both the main drain and the two beaver dams if they want to restore the water flow. If you got a foot of mud all the way around your pipe inlet, it’s got to reduce flow. It’d be like having a big water hair in your bath…
Charlie Munger: "I Got Rich When I Understood This" (Mental Models)
Billionaire investor Charlie Munger has said on countless occasions he got rich when he finally understood the power of what I referred to as mental models. I have gone through hundreds of hours of Charlie Munger’s interviews and writings to identify the …
The Problem With Spending $1,000,000 In 24 Hours | Mr Beast
What’s up guys? It’s Graham here. So I’ve been following the series by Mr. Beast in which 16 people compete for the chance to win the grand prize of 1 million dollars. Over the last month, those contestants have been whittled down to a remaining four, an…
Stoichiometry: mole-to-mole and percent yield | Chemistry | Khan Academy
As a chemist, your goal is to produce some ammonia, and you decide to use this chemical reaction to do that. Ammonia is useful in making fertilizers, for example, to improve the crop yields. Anyways, suppose you react 4.43 moles of hydrogen with excess o…
Is Political Difference Biological? | StarTalk
And so there’s a recent book called “Predisposed: Liberals, Conservatives, and the Biology of Political Differences.” It was like, yeah, let’s get some science! It’s like, roll some science into this conversation! And it suggests that political views may …