yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Scale factors and area


3m read
·Nov 11, 2024

We're told that polygon Q is a scaled copy of polygon P using a scale factor of one half. Polygon Q's area is what fraction of polygon P's area? Pause this video and see if you can figure that out.

All right, my brain wants to make this a little bit tangible. Once we get some practice, you might be able to do it without drawing pictures. But they're saying some arbitrary polygon Q and P, so let's just make a simple one. Since we're talking about area, I like to deal with rectangles because it's easy to think about the areas of rectangles.

Let's see. Polygon Q is a scaled copy of polygon P. So let's start with polygon P, and I will do this in red. So polygon P, let's just say I'm going to create an arbitrary polygon. Let's say that this side right over here is 4, and this side right over here is equal to 8. This is polygon P right over here. It's a quadrilateral; it's in fact a rectangle, and its area is just going to be 4 times 8, which is 32.

Now let's create polygon Q. Remember, polygon Q is a scaled copy of P using a scale factor of one half. We're going to scale it by one half. So instead of this side being 4, it's going to be 2. Instead of this side over here, this being 8, the corresponding side in the scaled version is going to be 4. So there you go, we've scaled it by one half.

Now, what is our area going to be? Well, our area, and this is polygon Q, so our area is going to be 2 times 4, which is equal to 8. Notice that polygon Q's area is one-fourth of polygon P's area. That makes sense because when you scale the dimensions of the polygon by one half, the area is going to change by the square of that. One-half squared is one-fourth, so the area has been changed by a factor of one-fourth.

Or another way to answer this question: Polygon Q's area is what fraction of polygon P's area? Well, it's going to be one-fourth of polygon P's area. The big takeaway here is if you scale something—if you scale the sides of a figure by one half each—then the area is going to be the square of that. So one half squared is one over four. If it was scaled by one third, then the area would be scaled or the area would be one ninth. If it was scaled by a factor of 2, then our area would have grown by a factor of 4.

Let's do another example here. We are told rectangle N has an area of 5 square units. Let me do this in a different color. So rectangle N has an area of five square units. James drew a scaled version of rectangle N and labeled it rectangle P, so they have that right over here. This is a scaled version of rectangle N.

What scale factor did James use to go from rectangle N to rectangle P? So let's think about it. We give us rectangle P right over here, and let's think about its dimensions. This height is one, two, three, four, five; it's five high, and it is one, two, three, four, five, six, seven, eight, nine wide. So its area, its area is equal to 45.

Now rectangle N had an area of 5 square units, so our area—let me write this down—N area to P area is multiplying by a factor of nine for going from an area of five square units to 45 square units. Notice N's area is 5. In that color, N's area is 5 square units. P's area we just figured out is 45 square units. So we have it growing by a factor of 9.

Now, what would be the scale factor if our area grew by a factor of 9? Well, we just talked about the idea that area will grow. The factor with which area grows is the square of the scale factor. So, one way to think about it is scale factor squared is going to be equal to nine.

Another way to think about it: our scale factor is going to be equal to 3 to go from N to P. Now let's verify that. We answered their question, but I just wanted us to feel good about it. Let's draw a rectangle that is scaled down from P by a factor of three.

If we were to scale it up by a factor of three, we get rectangle P. So its bottom would have a length of three instead of nine. So it'd be like this: so that would be three, and its height instead of being five, it would be five thirds. Five thirds is one and two thirds, so it'd go about that high. It would look something like that; it would be five thirds.

So our rectangle N would look like this. What is its area? Well, five thirds times three is indeed 5 square units. So notice when we have the area growing by a factor of nine, the scale factor of the size to go from five thirds to five, you multiply by three. To go from three to nine, you multiply by three.

More Articles

View All
How to Throw an Atlatl | Live Free or Die: DIY
[Music] So this is the ATL, and this is what they call the dart. It predates the bow and arrow people. It’s really responsible for our survival as human beings. So this tool has been used for a longer duration than probably any other hunting tool that ma…
Estimating multi-digit multiplication word problems | Grade 5 (TX TEKS) | Khan Academy
We’re told results from a survey showed that 2,138 people took photos with the camera when on vacation. About 15 times as many people took photos with their phone. About how many people took photos with their phone? So pause this video and take a shot at …
This Monster Helped Save 4.5 Million Lives | How Science Fiction Inspired Science
When you think about a mad scientist, who do you think of? How about Dr. Jacqueline or Doc Brown? Maybe a few characters from comic books. Okay, maybe more than a few from comic books. Chances are, though, there’s one name that came to mind first: Franken…
Dream - Motivational Video
I don’t know what that dream is that you have. I don’t care how disappointing it might’ve been as you’ve been working toward that dream, but that dream that you’re holding in your mind, that it’s possible! That some of you already know. That it’s hard, i…
Supreme Court BANS Faithless Electors…………?
Hello Internet. Time for a quick update regarding everyone’s favorite voting system: The Electoral College. America’s… idiosyncratic method of picking her president. It’s been unchanged (mostly) for centuries, but this video exists because, in July 2020, …
Quadratic approximation example
When we last left off in the riveting saga of quadratic approximations of multivariable functions, we were approximating a two-variable function f of x, y, and we ended up with this pretty monstrous expression. Because it’s written in its full abstract fo…