yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with multiple variables: Roller coaster | Modeling | Algebra II | Khan Academy


2m read
·Nov 10, 2024

We're told a roller coaster has c cars, each containing 20 seats, and it completes r rides a day. Assuming that no one can ride it more than once a day, the maximum number of people that can ride the roller coaster in a single day is p. Write an equation that relates p, c, and r. Pause this video and see if you can do that.

All right, before I even look at the variables, I'm just going to try to think it out in plain language. So what we want to think about is what is the max number of people per day? People per day, and so that's going to be equal to the number of cars in our roller coaster, so number of cars times the maximum number of people per car. Times the max number per car, so this would just tell you the maximum number of people per ride.

So then we have to multiply it times the number of rides per day. So times, we do this in a new color, times number of rides per day. Now what are each of these things? They would have either given us numbers or variables for each of them. The max number of people per day, that's what we're trying to set on one side of the equation. That is this variable p right over here.

So we'll say capital P is equal to what's the number of cars per coaster? I guess you could say, let me write it this way, per coaster, per roller coaster. So they give us that right over here. A roller coaster has c cars, so that's going to be this variable here in orange, or this part of it, that's c.

Now, what's the maximum number of people per car? Well, they say each containing 20 seats, so I'd multiply that times 20 for this part. And then I want to multiply that times the number of rides per day for the entire roller coaster, so that's going to be times r. And we're done.

We could rearrange this a little bit; we could write this as p is equal to 20 times c times r, and we're done.

More Articles

View All
How To Get A PERFECT Credit Score For $0
What’s up guys, it’s Graham here! So it finally happened, and we are celebrating today because for the last nine years, my credit score has never once surpassed the legendary eight hundred score. I got it once to seven ninety-nine, but it was just never a…
Natural selection and adaptation | Mechanisms of evolution | High school biology | Khan Academy
Hi everybody, Dr. Sammy here, your friendly neighborhood entomologist, and I was hoping that we could take a few minutes to talk about adaptation. What comes to mind when you think about adaptation? You might think of cryptic morphology that helps organi…
The Murder of Carmine Galante | Narco Wars
1978, Carmine Galante goes back to prison for violating parole. They should have held him there, clearly, because he was consorting with criminal associates, violating parole. But Roy Cohn got him out of prison in record time. So he got let out early ‘79…
The Desire to Not Exist
Sleep is good; death is better. Yet surely never to have been born is best. These lines close a 17th-century poem by German writer Hinrich Hine. The piece is titled “Death and His Brother’s Sleep.” It compares these two states, suggesting that we experien…
Long term economic profit for monopolistic competition | Microeconomics | Khan Academy
We have already thought about the demand curves for perfect competition and monopolies and the types of economic profit that might result in. In this video, we’re going to focus on something in between, which we’ve talked about in previous videos, which i…
TI-84 geometpdf and geometcdf functions | Random variables | AP Statistics | Khan Academy
What we’re going to do in this video is learn how to use a graphing calculator, in particular, a TI-84. If you’re using any other TI Texas Instrument calculator, it’ll be very similar in order to answer some questions dealing with geometric random variabl…