yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard deviation of residuals or root mean square deviation (RMSD) | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

So we are interested in studying the relationship between the amount that folks study for a test and their score on a test, where the score is between zero and six.

What we're going to do is go look at the people who took the tests. We're going to plot for each person the amount that they studied and their score. For example, this data point is someone who studied an hour, and they got a one on the test. Then we're going to fit a regression line, and this blue regression line is the actual regression line for these four data points. Here is the equation for that regression line.

Now, there are a couple of things to keep in mind. Normally, when you're doing this type of analysis, you do it with far more than four data points. The reason why I kept this to four is because we're actually going to calculate how good a fit this regression line is by hand, and typically you would not do it by hand; we have computers for that.

The way that we're going to measure how good a fit this regression line is to the data has several names. One name is the standard deviation of the residuals; another name is the root mean square deviation, sometimes abbreviated as RMSD. Sometimes it's called root mean square error.

So what we're going to do is, for every point, we're going to calculate the residual. Then we're going to square it and add up the sum of those squared residuals. We're going to take the sum of the residuals squared, and then we're going to divide that by the number of data points we have minus two. We can talk in future videos or a more advanced statistics class about why you divide by two, but it's related to the idea that what we're calculating here is a statistic, and we're trying to estimate a true parameter as best as possible.

N minus 2 actually does the trick for us. To calculate the root mean square deviation, we would then take the square root of this. Some of you might recognize strong parallels between this and how we calculated sample standard deviation early in our statistics career, and I encourage you to think about it.

But let's actually calculate it by hand, as I mentioned earlier in this video, to see how things actually play out. To do that, I'm going to give ourselves a little table here. Let's say that is our x value in that column. Let's make this our y value. Let's make this y hat, which is going to be equal to 2.5x minus 2.

Then let's make this the residual squared, which is going to be our y value minus our y hat value; our actual minus our estimate for that given x, squared. Then we're going to sum them all up, divide by n minus 2, and take the square root.

So first, let's do this data point: that's the point 1, 1. Now, what is the estimate from our regression line? For that x value, when x is equal to 1, it's going to be 2.5 times 1 minus 2. So it's going to be 2.5 times 1 minus 2, which is equal to 0.5.

Our residual squared is going to be 1 minus 0.5, which is equal to 0.5 squared, which is going to be 0.25. All right, let's do the next data point. We have this one right over here; it is 2, 2. Now our estimate from the regression line when x equals 2 is going to be equal to 2.5 times our x value (which is 2) minus 2, which is going to be equal to 3.

So our residual squared is going to be 2 minus 3, then squared. This is negative 1 squared, which is going to be equal to 1. Then we can go to this point; that's the point 2, 3. Now, our estimate from our regression line is going to be 2.5 times our x value (which is 2) minus 2, which is going to be equal to 3.

So our residual here is going to be zero, and you can see that that point sits on the regression line. It's going to be 3 minus 3, squared, which is equal to 0. Then, last but not least, we have this point right over here: when x is 3, our y value is, this person studied 3 hours, and they got a 6 on the test. So y is equal to 6.

Our estimate from the regression line, based on that regression line, is going to be 2.5 times our x value (which is 3) minus 2, which is equal to 5.5. Our residual squared is going to be 6 minus 5.5, squared, which is 0.5 squared, which is 0.25.

Now, the next step: let me take the sum of all of these squared residuals. So this can be written as follows: the sum of the residuals squared is equal to, if I just sum all of this up, it's going to be 1.5.

If I divide that by n minus 2, that's going to be equal to, I have four data points, so I'm going to divide by 4 minus 2. I'm going to divide by 2, and then I'm going to want to take the square root of that.

This is going to get us 1.5 over 2, which is the same thing as 3/4. So it's the square root of three-fourths or the square root of 3 over 2. You could use a calculator to figure out what that is as a decimal.

But this gives us a sense of how good a fit this regression line is. The closer this is to zero, the better the fit of the regression line; the further away from zero, the worse the fit. What would be the units for the root mean square deviation?

Well, it would be in terms of whatever your units are for your y-axis. In this case, it would be the score on the test, and that's one of the other values of this calculation of taking the square root of the sum of the squares of the residuals divided by n minus 2.

So, big picture: this square root of 3 over 2 can be viewed as the approximate size of a typical or average prediction error between these points and what the regression line would have predicted. Or you could view it as the approximate size of a typical or average residual.

More Articles

View All
How to Find the Right Co-founder
[Music] Hi, I’m Han Stagger, and I’m a partner at White Community. Today, I’m going to be talking about what I think are the most important parts of starting a company, which is finding the right co-founder. So, let’s start by talking about why you shoul…
Ask me anything with Sal Khan: May 15 | Homeroom with Sal
Hi everyone, welcome to the daily homeroom livestream. For those of you all who are wondering what this is, when we started having physical school closures, we realized—and everyone had to be socially distant—we realized that it’s our duty really, as a no…
The Assassin's Water Bottle
This water bottle allows you to carry two different liquids and dispense them from the same nozzle separately or together at your command. It’s a collaboration between myself and Steve Mold that you can pre-order now. It all started when Steve and I were…
AI in Education: Opportunities + Pitfalls
All right, welcome everyone! This is Jeremy Schiefling with Khan Academy. I am so thrilled to welcome you back for round two of our AI and education webinar series this summer. I know that this summer time is your time, and so I apologize for intruding up…
2015 AP Calculus AB 6b | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Find the coordinates of all points on the curve at which the line tangent to the curve at that point is vertical. So, we want to figure out the points on that curve where the tangent line is vertical. Let’s just remind ourselves what the slope of a tange…
Your Top Questions on Economics & Investments Answered: Part 2
I was asked about money and saving and investing, and what the most important things are. Start with the basics: what do you need, for how long, and what do you have in relationship to that? That’s most fundamental. Then, you can get into the more esoter…