yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard deviation of residuals or root mean square deviation (RMSD) | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

So we are interested in studying the relationship between the amount that folks study for a test and their score on a test, where the score is between zero and six.

What we're going to do is go look at the people who took the tests. We're going to plot for each person the amount that they studied and their score. For example, this data point is someone who studied an hour, and they got a one on the test. Then we're going to fit a regression line, and this blue regression line is the actual regression line for these four data points. Here is the equation for that regression line.

Now, there are a couple of things to keep in mind. Normally, when you're doing this type of analysis, you do it with far more than four data points. The reason why I kept this to four is because we're actually going to calculate how good a fit this regression line is by hand, and typically you would not do it by hand; we have computers for that.

The way that we're going to measure how good a fit this regression line is to the data has several names. One name is the standard deviation of the residuals; another name is the root mean square deviation, sometimes abbreviated as RMSD. Sometimes it's called root mean square error.

So what we're going to do is, for every point, we're going to calculate the residual. Then we're going to square it and add up the sum of those squared residuals. We're going to take the sum of the residuals squared, and then we're going to divide that by the number of data points we have minus two. We can talk in future videos or a more advanced statistics class about why you divide by two, but it's related to the idea that what we're calculating here is a statistic, and we're trying to estimate a true parameter as best as possible.

N minus 2 actually does the trick for us. To calculate the root mean square deviation, we would then take the square root of this. Some of you might recognize strong parallels between this and how we calculated sample standard deviation early in our statistics career, and I encourage you to think about it.

But let's actually calculate it by hand, as I mentioned earlier in this video, to see how things actually play out. To do that, I'm going to give ourselves a little table here. Let's say that is our x value in that column. Let's make this our y value. Let's make this y hat, which is going to be equal to 2.5x minus 2.

Then let's make this the residual squared, which is going to be our y value minus our y hat value; our actual minus our estimate for that given x, squared. Then we're going to sum them all up, divide by n minus 2, and take the square root.

So first, let's do this data point: that's the point 1, 1. Now, what is the estimate from our regression line? For that x value, when x is equal to 1, it's going to be 2.5 times 1 minus 2. So it's going to be 2.5 times 1 minus 2, which is equal to 0.5.

Our residual squared is going to be 1 minus 0.5, which is equal to 0.5 squared, which is going to be 0.25. All right, let's do the next data point. We have this one right over here; it is 2, 2. Now our estimate from the regression line when x equals 2 is going to be equal to 2.5 times our x value (which is 2) minus 2, which is going to be equal to 3.

So our residual squared is going to be 2 minus 3, then squared. This is negative 1 squared, which is going to be equal to 1. Then we can go to this point; that's the point 2, 3. Now, our estimate from our regression line is going to be 2.5 times our x value (which is 2) minus 2, which is going to be equal to 3.

So our residual here is going to be zero, and you can see that that point sits on the regression line. It's going to be 3 minus 3, squared, which is equal to 0. Then, last but not least, we have this point right over here: when x is 3, our y value is, this person studied 3 hours, and they got a 6 on the test. So y is equal to 6.

Our estimate from the regression line, based on that regression line, is going to be 2.5 times our x value (which is 3) minus 2, which is equal to 5.5. Our residual squared is going to be 6 minus 5.5, squared, which is 0.5 squared, which is 0.25.

Now, the next step: let me take the sum of all of these squared residuals. So this can be written as follows: the sum of the residuals squared is equal to, if I just sum all of this up, it's going to be 1.5.

If I divide that by n minus 2, that's going to be equal to, I have four data points, so I'm going to divide by 4 minus 2. I'm going to divide by 2, and then I'm going to want to take the square root of that.

This is going to get us 1.5 over 2, which is the same thing as 3/4. So it's the square root of three-fourths or the square root of 3 over 2. You could use a calculator to figure out what that is as a decimal.

But this gives us a sense of how good a fit this regression line is. The closer this is to zero, the better the fit of the regression line; the further away from zero, the worse the fit. What would be the units for the root mean square deviation?

Well, it would be in terms of whatever your units are for your y-axis. In this case, it would be the score on the test, and that's one of the other values of this calculation of taking the square root of the sum of the squares of the residuals divided by n minus 2.

So, big picture: this square root of 3 over 2 can be viewed as the approximate size of a typical or average prediction error between these points and what the regression line would have predicted. Or you could view it as the approximate size of a typical or average residual.

More Articles

View All
10 TIPS TO REACH THE ULTIMATE HAPPINESS LEVEL | Marcus Aurelius | STOICISM
10 TIPS TO REACH THE ULTIMATE HAPPINESS LEVEL | Marcus Aurelius What made Marcus Aurelius so exceptional? He was one of the five noble emperors who truly cared for their people. He was also a loyal student of Stoic philosophy and found time to write a se…
15 Signs Money Controls You
A lack of money control makes rich people greedy and poor people miserable. It’s the reason why most say that money is the root of all evil. There are some signs when money starts to take control over your emotions and judgments. So here are 15 signs mone…
See the Brooklyn Bridge Model Made From 5,000 Plastic Bottles | National Geographic
[Music] I want people to feel emotion, because when art, until the moment of caring, it allows people to connect to an issue that they are otherwise not sensitive to. It allows them to change their inner attitude, because who you are on the inside is how …
Supervenience
One of the questions was, “Um, how is it that logic supervenes on our brains?” And I think it’s a good question. Um, I think it’s a question that we’re not currently in a position to give a full answer to. Um, for that, our understanding of how the bra…
Elad Gil Shares Advice from the High Growth Handbook, a Guide to Scaling Startups
The first question I wanted to ask you: the book is called High-Growth Handbook, not the High-Growth Hanjo, just High-Growth Handbook. Given that so few companies ever make it to high growth, you know, thousands of employees, why should an average entrepr…
World's Lightest Solid!
This is aerogel. The world’s lightest, that is least dense, solid. This piece has a mass of just 1.22 grams. That is only a few times the mass of the same volume of air, which kind of makes sense because it is 99.8% air. In fact, some aerogels are so ligh…