yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting before integrating | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's say that we wanted to take the indefinite integral of ( x^2 \times (3x - 1) , dx ). Pause this video and see if you can evaluate this.

So you might be saying, "Oh, what kind of fancy technique could I use?" But you will see sometimes the fanciest or maybe the least fancy but the best technique is to just simplify this algebraically.

So in this situation, what happens if we distribute this ( x^2 )? Well then, we're going to get a polynomial here within the integral. So this is going to be equal to the integral of ( x^2 \times 3x = 3x^3 ) and then negative 1 times ( x^2 = -x^2 ), and then that times ( dx ).

Now, this is pretty straightforward to evaluate. This is going to be equal to the anti-derivative of ( x^3 ), which is ( \frac{x^4}{4} ). So this is going to be ( \frac{3x^4}{4} ). I could write it that way or let me just write it ( \frac{x^4}{4} ).

Then the anti-derivative of ( x^2 ) is ( \frac{x^3}{3} ), so minus ( \frac{x^3}{3} ). This is an indefinite integral; there might be a constant there, so let me write that down, and we're done.

The big takeaway is you just have to do a little bit of distribution to get a form where it's easy to evaluate the anti-derivative.

Let's do another example. Let's say that we want to take the indefinite integral of ( \frac{x^3 + 3x^2 - 5}{x^2} , dx ). What would this be? Pause the video again and see if you can figure it out.

So once again, your brain might want to try to do some fancy tricks or whatever else, but the main insight here is to realize that you could just simplify it algebraically.

What happens if you just divide each of these terms by ( x^2 )? Well then this thing is going to be equal to, put some parentheses here: ( \frac{x^3}{x^2} = x ), ( \frac{3x^2}{x^2} = 3 ), and then ( \frac{-5}{x^2} ) you could just write that as ( -5x^{-2} ).

So once again, we just need to use the reverse power rule here to take the anti-derivative. This is going to be, let's see, the anti-derivative of ( x ) is ( \frac{x^2}{2} ), ( \frac{x^2}{2} + 3x ), and the anti-derivative of ( -5x^{-2} ).

So we would increment the exponent by 1 (positive 1) and then divide by that value. So there would be ( -5x^{-1} ), we're adding one to negative one, all of that divided by negative one, which is the same.

We could write it like that. Well, these two would just, you'd have a minus and then you're dividing by negative one, so it's really just going—you can rewrite it like this: ( +5x^{-1} ). You could take the derivative of this to verify that it would indeed give you that, and of course we can't forget our ( +C ). Never forget that if you're taking an indefinite integral.

All right, let's just do one more for good measure. Let's say we're taking the indefinite integral of ( \sqrt[3]{x^5} , dx ). Pause the video and see if you can evaluate this.

Try to write a little bit neater: ( \sqrt[3]{x^5} , dx ). Pause the video and try to figure it out.

So here, the realization is, well, if you just rewrite all this as one exponent, so this is equal to the indefinite integral of ( x^{\frac{5}{3}} , dx ). I just rewrote the cube root as the ( \frac{1}{3} ) power ( dx ), which is the same thing as the integral of ( x^{\frac{5}{3}} ).

Many of you might have just gone straight to this step right over here. Then once again, we just have to use the reverse power rule. This is going to be ( x^{\frac{5}{3}} ).

If I raise something to a power and then raise that to a power, I can multiply those two exponents; that's just exponent properties. So, ( x^{\frac{5}{3}} , dx ). We increment this ( \frac{5}{3} ) by 1 or we can add ( \frac{3}{3} ) to it, so it's ( x^{\frac{8}{3}} ).

Then we divide by ( \frac{8}{3} ) or multiply by its reciprocal. So we could just say ( \frac{3}{8} \times x^{\frac{8}{3}} ).

And of course, we have our ( +C ) and verify this. If you use the power rule here, you'd have ( \frac{8}{3} \times \frac{3}{8} ) would just give you a coefficient of 1, and then you decrement this by 1.

You get to ( \frac{5}{3} ), which is exactly what we originally had. So the big takeaway of this video: many times the most powerful integration technique is literally just algebraic simplification first.

More Articles

View All
Probability with permutations & combinations example: taste testing | Probability & combinatorics
[Instructor] We’re told that Samara is setting up an olive tasting competition for a festival. From 15 distinct varieties, Samara will choose three different olive oils and blend them together. A contestant will taste the blend and try to identify which t…
Ultralight Camping: How to Minimize Your Pack | Get Out: A Guide to Adventure
My name is Hillary O’Neal, and I am a professional ski mountaineer and adventurer. Today, we’re going to talk about ultralight camping. The ethos behind ultralight camping is having the most minimal setup you need in order to complete whatever objective i…
The Big Misconception About Electricity
This video was sponsored by Caséta by Lutron. Imagine you have a giant circuit consisting of a battery, a switch, a light bulb, and two wires, which are each 300,000 kilometers long. That is the distance light travels in one second. So, they would reach o…
Scarcity and rivalry | Basic Economic Concepts | Microeconomics | Khan Academy
What we’re going to do in this video is talk about two related ideas that are really the foundations of economics: the idea of scarcity and the idea of rivalry. Now in other videos, we do a deep dive into what scarcity is, but just as a review in everyda…
Donald Trump Accuses President Biden Of Stopping Peace Deal Between Russia And Ukraine
Things P.O. on Ukraine and Iran—the two negotiations you’ll be heading into. Um, on Ukraine, you said just before, it’s a lot more complicated now, much more complicated. Do you believe it is because it would have never started, right? But it has started…
Multivariable chain rule intuition
So, in the last video, I introduced this multi-variable chain rule, and here, I want to explain a loose intuition for why it’s true, why you would expect something like this to happen. The way you think about an expression like this, you have this multiv…