yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting before integrating | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's say that we wanted to take the indefinite integral of ( x^2 \times (3x - 1) , dx ). Pause this video and see if you can evaluate this.

So you might be saying, "Oh, what kind of fancy technique could I use?" But you will see sometimes the fanciest or maybe the least fancy but the best technique is to just simplify this algebraically.

So in this situation, what happens if we distribute this ( x^2 )? Well then, we're going to get a polynomial here within the integral. So this is going to be equal to the integral of ( x^2 \times 3x = 3x^3 ) and then negative 1 times ( x^2 = -x^2 ), and then that times ( dx ).

Now, this is pretty straightforward to evaluate. This is going to be equal to the anti-derivative of ( x^3 ), which is ( \frac{x^4}{4} ). So this is going to be ( \frac{3x^4}{4} ). I could write it that way or let me just write it ( \frac{x^4}{4} ).

Then the anti-derivative of ( x^2 ) is ( \frac{x^3}{3} ), so minus ( \frac{x^3}{3} ). This is an indefinite integral; there might be a constant there, so let me write that down, and we're done.

The big takeaway is you just have to do a little bit of distribution to get a form where it's easy to evaluate the anti-derivative.

Let's do another example. Let's say that we want to take the indefinite integral of ( \frac{x^3 + 3x^2 - 5}{x^2} , dx ). What would this be? Pause the video again and see if you can figure it out.

So once again, your brain might want to try to do some fancy tricks or whatever else, but the main insight here is to realize that you could just simplify it algebraically.

What happens if you just divide each of these terms by ( x^2 )? Well then this thing is going to be equal to, put some parentheses here: ( \frac{x^3}{x^2} = x ), ( \frac{3x^2}{x^2} = 3 ), and then ( \frac{-5}{x^2} ) you could just write that as ( -5x^{-2} ).

So once again, we just need to use the reverse power rule here to take the anti-derivative. This is going to be, let's see, the anti-derivative of ( x ) is ( \frac{x^2}{2} ), ( \frac{x^2}{2} + 3x ), and the anti-derivative of ( -5x^{-2} ).

So we would increment the exponent by 1 (positive 1) and then divide by that value. So there would be ( -5x^{-1} ), we're adding one to negative one, all of that divided by negative one, which is the same.

We could write it like that. Well, these two would just, you'd have a minus and then you're dividing by negative one, so it's really just going—you can rewrite it like this: ( +5x^{-1} ). You could take the derivative of this to verify that it would indeed give you that, and of course we can't forget our ( +C ). Never forget that if you're taking an indefinite integral.

All right, let's just do one more for good measure. Let's say we're taking the indefinite integral of ( \sqrt[3]{x^5} , dx ). Pause the video and see if you can evaluate this.

Try to write a little bit neater: ( \sqrt[3]{x^5} , dx ). Pause the video and try to figure it out.

So here, the realization is, well, if you just rewrite all this as one exponent, so this is equal to the indefinite integral of ( x^{\frac{5}{3}} , dx ). I just rewrote the cube root as the ( \frac{1}{3} ) power ( dx ), which is the same thing as the integral of ( x^{\frac{5}{3}} ).

Many of you might have just gone straight to this step right over here. Then once again, we just have to use the reverse power rule. This is going to be ( x^{\frac{5}{3}} ).

If I raise something to a power and then raise that to a power, I can multiply those two exponents; that's just exponent properties. So, ( x^{\frac{5}{3}} , dx ). We increment this ( \frac{5}{3} ) by 1 or we can add ( \frac{3}{3} ) to it, so it's ( x^{\frac{8}{3}} ).

Then we divide by ( \frac{8}{3} ) or multiply by its reciprocal. So we could just say ( \frac{3}{8} \times x^{\frac{8}{3}} ).

And of course, we have our ( +C ) and verify this. If you use the power rule here, you'd have ( \frac{8}{3} \times \frac{3}{8} ) would just give you a coefficient of 1, and then you decrement this by 1.

You get to ( \frac{5}{3} ), which is exactly what we originally had. So the big takeaway of this video: many times the most powerful integration technique is literally just algebraic simplification first.

More Articles

View All
This U.S. Fencer Is Named After a Warrior Queen—and It Shows | Short Film Showcase
I don’t like to fight people, but you can’t get by without fighting. My mom named me after Queen Ninga from Angola; she was a warrior queen. I met Peter Westbrook when I was nine. Peter Westbrook is a legend in US fencing. He fenced at a time when black f…
How to become a strong negotiator!
Best place to learn your negotiating skills is with your boyfriend, girlfriend, husband, wife, your kids, your parents. That’s the place you fight like hell, and then you make up right after that. But at least, hopefully, you’ve learned something about it…
The vowel-shift irregular verb | The parts of speech | Grammar | Khan Academy
Hello grammarians! We’re talking about vowel shifting in irregular verbs, which is gonna sound a little weird, but bear with me. To review what a vowel is super quick, a vowel is any sound that your mouth can make while your tongue isn’t touching your li…
Warren Buffett's Annual Letter to Shareholders (2021)
Hey guys, welcome back to the channel. In this video, we’re going to be talking through Warren Buffett’s 2020 letter to Berkshire Hathaway shareholders. Of course, he writes one of these every single year. There’s a bit of an update on what he’s thinking …
Human impacts on the environment | Middle school Earth and space science | Khan Academy
Everything we do has an impact on the world around us that can be a good thing or a bad one. For most of us, that impact can seem pretty small. If you throw an empty can on the ground instead of in the recycling bin, your local park will still be pretty c…
Science Is an Error-Correcting Mechanism
So getting back to good explanations, where do these explanations come from? There’s currently an obsession with induction. Induction being the idea that you can predict the future from the past. You can say, “I saw one, then two, then three, then four, …