yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting before integrating | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's say that we wanted to take the indefinite integral of ( x^2 \times (3x - 1) , dx ). Pause this video and see if you can evaluate this.

So you might be saying, "Oh, what kind of fancy technique could I use?" But you will see sometimes the fanciest or maybe the least fancy but the best technique is to just simplify this algebraically.

So in this situation, what happens if we distribute this ( x^2 )? Well then, we're going to get a polynomial here within the integral. So this is going to be equal to the integral of ( x^2 \times 3x = 3x^3 ) and then negative 1 times ( x^2 = -x^2 ), and then that times ( dx ).

Now, this is pretty straightforward to evaluate. This is going to be equal to the anti-derivative of ( x^3 ), which is ( \frac{x^4}{4} ). So this is going to be ( \frac{3x^4}{4} ). I could write it that way or let me just write it ( \frac{x^4}{4} ).

Then the anti-derivative of ( x^2 ) is ( \frac{x^3}{3} ), so minus ( \frac{x^3}{3} ). This is an indefinite integral; there might be a constant there, so let me write that down, and we're done.

The big takeaway is you just have to do a little bit of distribution to get a form where it's easy to evaluate the anti-derivative.

Let's do another example. Let's say that we want to take the indefinite integral of ( \frac{x^3 + 3x^2 - 5}{x^2} , dx ). What would this be? Pause the video again and see if you can figure it out.

So once again, your brain might want to try to do some fancy tricks or whatever else, but the main insight here is to realize that you could just simplify it algebraically.

What happens if you just divide each of these terms by ( x^2 )? Well then this thing is going to be equal to, put some parentheses here: ( \frac{x^3}{x^2} = x ), ( \frac{3x^2}{x^2} = 3 ), and then ( \frac{-5}{x^2} ) you could just write that as ( -5x^{-2} ).

So once again, we just need to use the reverse power rule here to take the anti-derivative. This is going to be, let's see, the anti-derivative of ( x ) is ( \frac{x^2}{2} ), ( \frac{x^2}{2} + 3x ), and the anti-derivative of ( -5x^{-2} ).

So we would increment the exponent by 1 (positive 1) and then divide by that value. So there would be ( -5x^{-1} ), we're adding one to negative one, all of that divided by negative one, which is the same.

We could write it like that. Well, these two would just, you'd have a minus and then you're dividing by negative one, so it's really just going—you can rewrite it like this: ( +5x^{-1} ). You could take the derivative of this to verify that it would indeed give you that, and of course we can't forget our ( +C ). Never forget that if you're taking an indefinite integral.

All right, let's just do one more for good measure. Let's say we're taking the indefinite integral of ( \sqrt[3]{x^5} , dx ). Pause the video and see if you can evaluate this.

Try to write a little bit neater: ( \sqrt[3]{x^5} , dx ). Pause the video and try to figure it out.

So here, the realization is, well, if you just rewrite all this as one exponent, so this is equal to the indefinite integral of ( x^{\frac{5}{3}} , dx ). I just rewrote the cube root as the ( \frac{1}{3} ) power ( dx ), which is the same thing as the integral of ( x^{\frac{5}{3}} ).

Many of you might have just gone straight to this step right over here. Then once again, we just have to use the reverse power rule. This is going to be ( x^{\frac{5}{3}} ).

If I raise something to a power and then raise that to a power, I can multiply those two exponents; that's just exponent properties. So, ( x^{\frac{5}{3}} , dx ). We increment this ( \frac{5}{3} ) by 1 or we can add ( \frac{3}{3} ) to it, so it's ( x^{\frac{8}{3}} ).

Then we divide by ( \frac{8}{3} ) or multiply by its reciprocal. So we could just say ( \frac{3}{8} \times x^{\frac{8}{3}} ).

And of course, we have our ( +C ) and verify this. If you use the power rule here, you'd have ( \frac{8}{3} \times \frac{3}{8} ) would just give you a coefficient of 1, and then you decrement this by 1.

You get to ( \frac{5}{3} ), which is exactly what we originally had. So the big takeaway of this video: many times the most powerful integration technique is literally just algebraic simplification first.

More Articles

View All
I got a CUSTOMIZED Credit Card from ZHC
Do you know about how much every single month you would just spend just on yourself? [Applause] Whatever we make, we spend. What’s the most you’ve spent for a video? Like anywhere from 300,000 to—Wow! What’s up you guys, it’s Graham here. So if you’ve sp…
Rant: This is exactly why and when information is USELESS
What’s up you guys, it’s Graham here. So everything you’re watching is useless, everything you’re reading is useless, everything you’re learning is useless, and it’s useless if you don’t actually do anything with it. There’s a big problem right now that s…
How your image can MAKE or BREAK you
What’s up you guys, it’s Graham here. So, how important is your image? Now, we all hear that a book shouldn’t be judged by its cover, that we should get to know somebody first and give them a chance, but in reality, this rarely ever happens. Now, whether…
When there aren't gains from trade | Basic economics concepts | AP Macroeconomics | Khan Academy
So let’s say we’re in a very simplified world where we have two countries: Country A and Country B. They’re each capable of producing apples or bananas or some combination of them. What this chart tells us is if Country A put all of their energy behind ap…
How to Surface a Submarine in the Arctic Ocean - Smarter Every Day 260
[Man] Seven zero, six up, point four up. Standby for impact! - Welcome back to Smarter Every Day. I’ve made a really long journey to an ice floe in the Arctic Ocean to board the USS Toledo, a U.S. Navy fast attack nuclear submarine, which has punched its …
Second derivatives (parametric functions) | Advanced derivatives | AP Calculus BC | Khan Academy
So here we have a set of parametric equations where x and y are both defined in terms of t. If you input all the possible ts that you can into these functions and then plot the corresponding x and y’s for each chord for each t, this will plot a curve in t…