yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting before integrating | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's say that we wanted to take the indefinite integral of ( x^2 \times (3x - 1) , dx ). Pause this video and see if you can evaluate this.

So you might be saying, "Oh, what kind of fancy technique could I use?" But you will see sometimes the fanciest or maybe the least fancy but the best technique is to just simplify this algebraically.

So in this situation, what happens if we distribute this ( x^2 )? Well then, we're going to get a polynomial here within the integral. So this is going to be equal to the integral of ( x^2 \times 3x = 3x^3 ) and then negative 1 times ( x^2 = -x^2 ), and then that times ( dx ).

Now, this is pretty straightforward to evaluate. This is going to be equal to the anti-derivative of ( x^3 ), which is ( \frac{x^4}{4} ). So this is going to be ( \frac{3x^4}{4} ). I could write it that way or let me just write it ( \frac{x^4}{4} ).

Then the anti-derivative of ( x^2 ) is ( \frac{x^3}{3} ), so minus ( \frac{x^3}{3} ). This is an indefinite integral; there might be a constant there, so let me write that down, and we're done.

The big takeaway is you just have to do a little bit of distribution to get a form where it's easy to evaluate the anti-derivative.

Let's do another example. Let's say that we want to take the indefinite integral of ( \frac{x^3 + 3x^2 - 5}{x^2} , dx ). What would this be? Pause the video again and see if you can figure it out.

So once again, your brain might want to try to do some fancy tricks or whatever else, but the main insight here is to realize that you could just simplify it algebraically.

What happens if you just divide each of these terms by ( x^2 )? Well then this thing is going to be equal to, put some parentheses here: ( \frac{x^3}{x^2} = x ), ( \frac{3x^2}{x^2} = 3 ), and then ( \frac{-5}{x^2} ) you could just write that as ( -5x^{-2} ).

So once again, we just need to use the reverse power rule here to take the anti-derivative. This is going to be, let's see, the anti-derivative of ( x ) is ( \frac{x^2}{2} ), ( \frac{x^2}{2} + 3x ), and the anti-derivative of ( -5x^{-2} ).

So we would increment the exponent by 1 (positive 1) and then divide by that value. So there would be ( -5x^{-1} ), we're adding one to negative one, all of that divided by negative one, which is the same.

We could write it like that. Well, these two would just, you'd have a minus and then you're dividing by negative one, so it's really just going—you can rewrite it like this: ( +5x^{-1} ). You could take the derivative of this to verify that it would indeed give you that, and of course we can't forget our ( +C ). Never forget that if you're taking an indefinite integral.

All right, let's just do one more for good measure. Let's say we're taking the indefinite integral of ( \sqrt[3]{x^5} , dx ). Pause the video and see if you can evaluate this.

Try to write a little bit neater: ( \sqrt[3]{x^5} , dx ). Pause the video and try to figure it out.

So here, the realization is, well, if you just rewrite all this as one exponent, so this is equal to the indefinite integral of ( x^{\frac{5}{3}} , dx ). I just rewrote the cube root as the ( \frac{1}{3} ) power ( dx ), which is the same thing as the integral of ( x^{\frac{5}{3}} ).

Many of you might have just gone straight to this step right over here. Then once again, we just have to use the reverse power rule. This is going to be ( x^{\frac{5}{3}} ).

If I raise something to a power and then raise that to a power, I can multiply those two exponents; that's just exponent properties. So, ( x^{\frac{5}{3}} , dx ). We increment this ( \frac{5}{3} ) by 1 or we can add ( \frac{3}{3} ) to it, so it's ( x^{\frac{8}{3}} ).

Then we divide by ( \frac{8}{3} ) or multiply by its reciprocal. So we could just say ( \frac{3}{8} \times x^{\frac{8}{3}} ).

And of course, we have our ( +C ) and verify this. If you use the power rule here, you'd have ( \frac{8}{3} \times \frac{3}{8} ) would just give you a coefficient of 1, and then you decrement this by 1.

You get to ( \frac{5}{3} ), which is exactly what we originally had. So the big takeaway of this video: many times the most powerful integration technique is literally just algebraic simplification first.

More Articles

View All
Periodicity of algebraic models | Mathematics III | High School Math | Khan Academy
We’re told Divya is seated on a Ferris wheel at time T equals zero. The graph below shows her height H in meters T seconds after the ride starts. So at time equals zero, she looks like about two. What is this? This would be one and a half, so it looks lik…
A Simulated Mars Tour | StarTalk
Hi Neil, welcome to Hi Seeds and Hawaii Space Exploration Animal Looking Simulation! I’m really excited to give you guys a tour, so come on, let’s go. This is the biology lab, and this is our astrobiologist Cyprian. So, most of the experiments we’re doin…
This Is the Future of Medicine | Origins: The Journey of Humankind
The collective wisdom of all of humankind led to the medical advancements that made us modern. We’re attacking the things that harm us on a microscopic level. We’re finding new ways of preventing disease every day. The question is, how far can we go? What…
Veritasium & Team Record Gold Invade London
Hey YouTube! I have a really important announcement to make. It’s not that you’re going to shave your beard, is it? No, it is way bigger than that! Roll sound! I’m here at the Olympic cauldron in Vancouver. As you know, I’ve been traveling for a long tim…
Scratch your brain #Shorts
Scratching out one of your notes means you’re noting that the note no longer needs to be noted. Try saying that five times really fast. These are shower thoughts. Another tongue twister: the more I light my lighter, the lighter my lighter gets until it’s…
With Grace | Short Film Showcase | National Geographic
[Music] [Music] Thank you, thank you. [Music] Come on, I’ve been happening. Okay, okay. [Music] You can even take overnight. Sometimes a day can pass or two. Okay. Foreign [Music] Grace, so I went home to catch up some rest. Around 23 hours, I had a knock…