yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion above | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

A set of philosophy exam scores are normally distributed with a mean of 40 points and a standard deviation of 3 points. Ludwig got a score of 47.5 points on the exam. What proportion of exam scores are higher than Ludwig's score? Give your answer correct to four decimal places.

So let's just visualize what's going on here. So the scores are normally distributed, so it would look like this. The distribution would look something like that, trying to make that pretty symmetric looking. The mean is 40 points, so that would be 40 points right over there. The standard deviation is three points, so this could be one standard deviation above the mean. That would be one standard deviation below the mean, and once again, this is just very rough.

So this would be 43, this would be 37 right over here. And they say Ludwig got a score of 47.5 points on the exam. So Ludwig's score is going to be someplace around here. So Ludwig got a 47.5 on the exam, and they're saying what proportion of exam scores are higher than Ludwig's score.

So what we need to do is figure out what is the area under the normal distribution curve that is above 47.5. So the way we will tackle this is we will figure out the z-score for 47.5. How many standard deviations above the mean is that? Then we will look at a z table to figure out what proportion is below that because that's what z tables give us; they give us the proportion that is below a certain z-score.

Then we could take one minus that to figure out the proportion that is above. Remember, the entire area under the curve is one, so if we can figure out this orange area and take one minus that, we're going to get the red area. So let's do that.

So first of all, let's figure out the z-score for 47.5. So let's see, we would take 47.5 and we would subtract the mean. So this is his score; we'll subtract the mean minus 40. We know what that's going to be; that's 7.5. So that's how much more above the mean.

But how many standard deviations is that? Well, each standard deviation is 3. So what's 7.5 divided by 3? This just means the previous answer divided by 3. So here’s 2.5 standard deviations above the mean. So the z-score here is a positive 2.5; if he was below the mean, it would be negative.

Now we can look at a z-table to figure out what proportion is less than 2.5 standard deviations above the mean. So that will give us that orange, and then we'll subtract that from one. So let's get our z table.

So here we go, and we've already done this in previous videos, but what's going on here is this left column gives us our z score up to the tenths place, and then these other columns give us the hundreds place. So what we want to do is find 2.5 right over here on the left, and it's actually going to be 2.50; there are zero hundredths here.

So we want to look up 2.50. So let me scroll my z table. So I'm going to go down to 2.5. All right, I think I am there. So what I have here is 2.5, so I am going to be in this row, and it's now scrolled off, but this first column we saw; this is two, this is the hundredths place, and this is zero hundredths.

So 2.50 puts us right over here. Now you might be tempted to say, "Okay, that's the proportion that scores higher than Ludwig," but you'd be wrong. This is the proportion that scores lower than Ludwig. So what we want to do is take 1 minus this value.

So let me get my calculator out again. So what I'm going to do is I'm going to take 1 minus this. 1 minus 0.9938 is equal to... now this is the proportion that scores less than Ludwig. 1 minus that is going to be the proportion that scores more than him.

The reason why we had to do this is because the z table gives us the proportion less than a certain z-score. So this gives us right over here 0.0062. So that's the proportion. If you thought of it in percent, it would be 0.62 percent scores higher than Ludwig, and that makes sense because Ludwig scored over two standard deviations—two and a half standard deviations—above the mean.

So our answer here is 0.0062. So this is going to be 0.0062; that's the proportion of exam scores higher than Ludwig's score.

More Articles

View All
The Stock Market Just Peaked
What’s up, Graham? It’s guys here. So, between record high inflation, imminent rate hikes, and outsized earnings, there’s no denying that there’s a lot of uncertainty and opposing viewpoints in the market right now. On the one side, we have some of the m…
Eulers formula magnitude
In this video, we’re going to talk a bunch about this fantastic number e to the J Omega T. One of the coolest things that’s going to happen here, we’re going to bring together what we know about complex numbers and this exponential form of complex numbers…
Animal behavior and offspring success | Middle school biology | Khan Academy
Let’s talk a little bit about reproductive success, which is related to the number of surviving offspring that an animal has during its lifetime. An animal that has more surviving offspring has a higher reproductive success. Now, there’s two broad categ…
Ice Fishing and Changing Diets (Clip) | Alaska: The Next Generation
It’s been a pretty heavy duty winter for us. It’s been a little rough. Whoa! You know, just staying at home and maintaining the farm. Go, go, go, go. No! The kids are kind of antsy if they’re cooped up for too long. We’re missing a chicken. I only count …
Seth MacFarlane’s Scientific Influences | StarTalk
Seth, I called you into my office. Yes, I gotta talk to you because you want me to help you clean up. I clean up the office. Uh, I got at some point I had to find you and talk to you about the science and Family Guy. Yeah, yeah, you just have to watch a …
Safari Live - Day 198 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon, and a very warm welcome to a sunny, beautiful afternoon in South Africa. As you can see, there are some big…