yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Standard normal table for proportion above | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

A set of philosophy exam scores are normally distributed with a mean of 40 points and a standard deviation of 3 points. Ludwig got a score of 47.5 points on the exam. What proportion of exam scores are higher than Ludwig's score? Give your answer correct to four decimal places.

So let's just visualize what's going on here. So the scores are normally distributed, so it would look like this. The distribution would look something like that, trying to make that pretty symmetric looking. The mean is 40 points, so that would be 40 points right over there. The standard deviation is three points, so this could be one standard deviation above the mean. That would be one standard deviation below the mean, and once again, this is just very rough.

So this would be 43, this would be 37 right over here. And they say Ludwig got a score of 47.5 points on the exam. So Ludwig's score is going to be someplace around here. So Ludwig got a 47.5 on the exam, and they're saying what proportion of exam scores are higher than Ludwig's score.

So what we need to do is figure out what is the area under the normal distribution curve that is above 47.5. So the way we will tackle this is we will figure out the z-score for 47.5. How many standard deviations above the mean is that? Then we will look at a z table to figure out what proportion is below that because that's what z tables give us; they give us the proportion that is below a certain z-score.

Then we could take one minus that to figure out the proportion that is above. Remember, the entire area under the curve is one, so if we can figure out this orange area and take one minus that, we're going to get the red area. So let's do that.

So first of all, let's figure out the z-score for 47.5. So let's see, we would take 47.5 and we would subtract the mean. So this is his score; we'll subtract the mean minus 40. We know what that's going to be; that's 7.5. So that's how much more above the mean.

But how many standard deviations is that? Well, each standard deviation is 3. So what's 7.5 divided by 3? This just means the previous answer divided by 3. So here’s 2.5 standard deviations above the mean. So the z-score here is a positive 2.5; if he was below the mean, it would be negative.

Now we can look at a z-table to figure out what proportion is less than 2.5 standard deviations above the mean. So that will give us that orange, and then we'll subtract that from one. So let's get our z table.

So here we go, and we've already done this in previous videos, but what's going on here is this left column gives us our z score up to the tenths place, and then these other columns give us the hundreds place. So what we want to do is find 2.5 right over here on the left, and it's actually going to be 2.50; there are zero hundredths here.

So we want to look up 2.50. So let me scroll my z table. So I'm going to go down to 2.5. All right, I think I am there. So what I have here is 2.5, so I am going to be in this row, and it's now scrolled off, but this first column we saw; this is two, this is the hundredths place, and this is zero hundredths.

So 2.50 puts us right over here. Now you might be tempted to say, "Okay, that's the proportion that scores higher than Ludwig," but you'd be wrong. This is the proportion that scores lower than Ludwig. So what we want to do is take 1 minus this value.

So let me get my calculator out again. So what I'm going to do is I'm going to take 1 minus this. 1 minus 0.9938 is equal to... now this is the proportion that scores less than Ludwig. 1 minus that is going to be the proportion that scores more than him.

The reason why we had to do this is because the z table gives us the proportion less than a certain z-score. So this gives us right over here 0.0062. So that's the proportion. If you thought of it in percent, it would be 0.62 percent scores higher than Ludwig, and that makes sense because Ludwig scored over two standard deviations—two and a half standard deviations—above the mean.

So our answer here is 0.0062. So this is going to be 0.0062; that's the proportion of exam scores higher than Ludwig's score.

More Articles

View All
Example of under coverage introducing bias | Study design | AP Statistics | Khan Academy
A senator wanted to know about how people in her state felt about internet privacy issues. She conducted a poll by calling 100 people whose names were randomly sampled from the phone book. Note that mobile phones and unlisted numbers are not in phone book…
Investigating Plastic Surgery Clinics | Trafficked with Mariana van Zeller
[suspenseful music] BLONDE WOMAN (VOICEOVER): Until recently, the high cost of plastic surgery meant that the only option for some patients seeking exaggerated curves were underground procedures like the silicone shots I witnessed in Atlanta. So this is …
Top 3 Tips for a Million-Dollar Pitch
[Music] So how long I think the audience might be interested to hear? Obviously, each one of the pitches is heavily edited down to the best parts. Yes, and it’s edited down for narrative, it’s edited down for conflict and collision of ideas. How much tim…
Rant: THIS is why you need to make YOUR OWN decisions...
What’s up you guys? It’s Graham here. So, I think between YouTube, Snapchat, and Instagram, I probably get a hundred messages per day. Now, one of the more common themes in messages that I get are questions like, “Hey Graham, is this a good idea? Should …
Identifying corresponding parts of scaled copies | Geometry | 7th grade | Khan Academy
We are told that figure two is a scaled copy of figure one, and we can verify that by comparing corresponding sides. Corresponding sides are sides that have the same relative position; they’re playing the same role in each of the diagrams, even if the dia…
Spinning Sphere of Molten Sodium
Thermometry is kind of a key safety diagnostic to make sure that we’re well controlled. Thermometry, thermometry! What if it gets too high? Here in trouble! Or sodium expands when it heats, the vessel has a certain volume. There’s a temperature above whic…