yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Uncovering the brain's biggest secret - Melanie E. Peffer


3m read
·Nov 8, 2024

In the late 1860s, scientists believed they were on the verge of uncovering the brain’s biggest secret. They already knew the brain controlled the body through electrical impulses. The question was, how did these signals travel through the body without changing or degrading? It seemed that perfectly transmitting these impulses would require them to travel uninterrupted along some kind of tissue. This idea, called reticular theory, imagined the nervous system as a massive web of tissue that physically connected every nerve cell in the body. Reticular theory captivated the field with its elegant simplicity.

But soon, a young artist would cut through this conjecture and sketch a bold new vision of how our brains work. Sixty years before reticular theory was born, developments in microscope technology revealed cells to be the building blocks of organic tissue. This finding was revolutionary, but early microscopes struggled to provide additional details. The technology was especially challenging for researchers studying the brain. Soft nervous tissue was delicate and difficult to work with. And even when researchers were able to get it under the microscope, the tissue was so densely packed it was impossible to see much.

To improve their view, scientists began experimenting with special staining techniques designed to provide clarity through contrast. The most effective came courtesy of Camillo Golgi in 1873. First, Golgi hardened the brain tissue with potassium bichromate to prevent cells from deforming during handling. Then he doused the tissue in silver nitrate, which visibly accumulated in nerve cells. Known as the “black reaction,” Golgi’s Method finally allowed researchers to see the entire cell body of what would later be named the neuron. The stain even highlighted the fibrous branches that shot off from the cell in different directions.

Images of these branches became hazy at the ends, making it difficult to determine exactly how they fit into the larger network. But Golgi concluded that these branches connected, forming a web of tissue comprising the entire nervous system. Fourteen years later, a young scientist and aspiring artist named Santiago Ramón y Cajal began to build on Golgi’s work. While writing a book about microscopic imaging, he came across a picture of a cell treated with Golgi’s stain. Cajal was in awe of its exquisite detail—both as a scientist and an artist. He soon set out to improve Golgi’s stain even further and create more detailed references for his artwork.

By staining the tissue twice in a specific time frame, Cajal found he could stain a greater number of neurons with better resolution. And what these new slides revealed would upend reticular theory—the branches reaching out from each nerve cell were not physically connected to any other tissue. So how were these individual cells transmitting electrical signals? By studying and sketching them countless times, Cajal developed a bold, new hypothesis. Instead of electrical signals traveling uninterrupted across a network of fibers, he proposed that signals were somehow jumping from cell to cell in a linear chain of activation.

The idea that electrical signals could travel this way was completely unheard of when Cajal proposed it in 1889. However, his massive collection of drawings supported his hypothesis from every angle. And in the mid-1900s, electron microscopy further supported this idea by revealing a membrane around each nerve cell keeping it separate from its neighbors. This formed the basis of the “neuron doctrine,” which proposed the brain’s tissue was made up of many discrete cells, instead of one connected tissue. The neuron doctrine laid the foundation for modern neuroscience and allowed later researchers to discover that electrical impulses are constantly converted between chemical and electrical signals as they travel from neuron to neuron.

Both Golgi and Cajal received the Nobel Prize for their separate, but shared discoveries, and researchers still apply their theories and methods today. In this way, their legacies remain connected as discrete elements in a vast network of knowledge.

More Articles

View All
7 Ways to Maximize Misery 😞
Happiness – many will advise you how to obtain it, but maybe you’re not trying to be happy. Your actions aim for the opposite. You want to be the saddest saddo sailing on the sea of sadness – much easier to achieve, and this video has 7 tactics to get you…
Behind the Scenes of Marvel Studios' Moon Knight | National Geographic
I’d love to take this opportunity to show you around with Moon Knight. We’re in a very different world. The world building is so complete and interesting, and it’s hard to paint such a big canvas. While you watch the show, you will learn about ancient Eg…
Prelude to the Peloponnesian War | World History | Khan Academy
In the last few videos, we talked about the Greco-Persian Wars, or we could say the Persian invasion of Greece. In the first wave, the first Persian invasion, the Athenians were able to stop them at Marathon. Then, in the second Persian invasion, led by X…
The Ponzi Factor: Banned on Quora
The first fallacy, when I believe the most fundamental falsehood that leads to other false ideas, is the notion that stocks are equity instruments that represent ownership. Finance professionals will argue the stock market can’t be a Ponzi scheme because …
Laws & Causes
[Music] Hey, Vsauce. Michael here. Do you want to see the most illegal thing I own? It’s a penny from 2027. That’s right, it is a piece of counterfeit US currency. Or is it? There are no 2027 pennies today, which means that this is a counterfeit of an ori…
Tim Brady - How Much Equity Should I Give My First Employees?
[Music] How much equity should you give your first set of employees? This is more art than science. Unfortunately, there’s no chart I can point you to where you can look up the number of employees and experience and get an exact figure. That’s not how it…