yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reversible reactions and equilibrium | High school chemistry | Khan Academy


2m read
·Nov 10, 2024

Let's imagine a reaction where we start with the reactants A and B, and they react to form the products C and D. Now, it turns out that in certain situations, the reaction could go the other way. You could start with C + D, and those could react to end up with A + B.

So, when you have a reaction like this that could go in either direction, we call that a reversible reaction. That's why the title of this video is "Reversible Reactions and Equilibrium." One way to say that it could go in either direction is to write it like this: A + B, and we use these half arrows.

So, it could go in that direction, or it could go in this direction. You could go to C + D. What's going to happen is the reaction is going to go in both directions. So, A + B is going to react to form C + D, and C + D is going to react to form A + B.

At some point, you're going to be hitting an equilibrium. That's the point at which the forward reaction is happening at the same rate as, I guess, you could consider it to be the backward reaction going from C + D to A + B.

Now, once you're at equilibrium, it doesn't mean that the reactions stop. It just means that the rate of going from A + B to C + D is the same as the rate of going from C + D to A + B. This is a really important thing to realize. A common misconception is that people think at equilibrium, somehow these reactions stop.

That is not the case. It's just that the rate of the forward reaction and the backward reaction has now become the same rate. So, even though you continue to have A + B forming C + D, you have the same rate at which C + D is now also going and forming A + B.

Another misconception here is that the concentrations of A, B, C, and D, once you're in equilibrium, would have stabilized. But it's not necessarily that the concentrations are equal. The point at which we're in equilibrium, you might have a much lower concentration of C and D than A or B, or the other way around.

What equilibrium is telling us is that, at equilibrium, the forward rate of reaction is equal to the backward rate of reaction.

More Articles

View All
Dividing whole numbers by 10 | Math | 4th grade | Khan Academy
Dividing by 10, a lot like multiplying by 10, creates a pattern with numbers. So let’s dig in and look at dividing by 10. Look at what happens when we divide by 10 and see if we can figure out that pattern and maybe even how it relates to the pattern for …
Example translating points
What we’re going to do in this video is look at all of the ways of describing how to translate a point and then to actually translate that point on our coordinate plane. So, for example, they say plot the image of point P under a translation by five unit…
Raja Ampat: The Last Stronghold of Healthy Coral Reefs | National Geographic
Coral reefs are the rainforests of our ocean, supporting millions of marine species and human livelihoods. But according to UNESCO, they could collapse by as soon as 2100. Scientists have identified several super reefs that could withstand ocean warming a…
Estimating decimal multiplication
Let’s now get some practice estimating multiplying with decimals. So first, here we have 7.8 times 307 is approximately equal to what? When you see the squiggly equal sign, that means approximately equal to one. What? So pause this video and see if you ca…
Worked example: Calculating the amount of product formed from a limiting reactant | Khan Academy
So right here we have a reaction where you can take some carbon monoxide gas and some hydrogen gas, and when they react, you’re going to produce methanol. This is actually pretty interesting; methanol has many applications. One of them, it’s actually race…
Impact of changes to trophic pyramids | High school biology | Khan Academy
What we see here is known as a trophic pyramid, and the word “trophic” in a biology context is referring to food relationships. So, one way to think about this is that it tells us who is eating whom and who is producing energy, and then who is able to lev…