yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reversible reactions and equilibrium | High school chemistry | Khan Academy


2m read
·Nov 10, 2024

Let's imagine a reaction where we start with the reactants A and B, and they react to form the products C and D. Now, it turns out that in certain situations, the reaction could go the other way. You could start with C + D, and those could react to end up with A + B.

So, when you have a reaction like this that could go in either direction, we call that a reversible reaction. That's why the title of this video is "Reversible Reactions and Equilibrium." One way to say that it could go in either direction is to write it like this: A + B, and we use these half arrows.

So, it could go in that direction, or it could go in this direction. You could go to C + D. What's going to happen is the reaction is going to go in both directions. So, A + B is going to react to form C + D, and C + D is going to react to form A + B.

At some point, you're going to be hitting an equilibrium. That's the point at which the forward reaction is happening at the same rate as, I guess, you could consider it to be the backward reaction going from C + D to A + B.

Now, once you're at equilibrium, it doesn't mean that the reactions stop. It just means that the rate of going from A + B to C + D is the same as the rate of going from C + D to A + B. This is a really important thing to realize. A common misconception is that people think at equilibrium, somehow these reactions stop.

That is not the case. It's just that the rate of the forward reaction and the backward reaction has now become the same rate. So, even though you continue to have A + B forming C + D, you have the same rate at which C + D is now also going and forming A + B.

Another misconception here is that the concentrations of A, B, C, and D, once you're in equilibrium, would have stabilized. But it's not necessarily that the concentrations are equal. The point at which we're in equilibrium, you might have a much lower concentration of C and D than A or B, or the other way around.

What equilibrium is telling us is that, at equilibrium, the forward rate of reaction is equal to the backward rate of reaction.

More Articles

View All
Updates for Startup School 2019 and Office Hours with Kevin Hale
Kevin Hale: Welcome to the podcast! Craig: Hi! Kevin Hale: You are running Startup School this year, me and Adora are hosting and the main instructors for Startup School. So many people know about Startup School; we’ve talked about it on the podcast bef…
Alpha decay | Physics | Khan Academy
Why doesn’t our periodic table go on forever? Why don’t we have, for example, elements with 300 protons? So, say, a TH000 protons. Well, the short answer is because the heavier the elements, the more unstable they become. For example, elements about atomi…
Pronoun-antecedent agreement | Syntax | Khan Academy
Hello grammarians! Hello visiting cousin Beth! Hello cousin David! So today, we’re going to be talking about pronoun antecedent agreement. And what is that? So an antecedent is a thing that goes before. So ‘ante’ means before and ‘seedent’ is like a goin…
17 Daily Habits That Made Me A Millionaire
What’s up you guys? It’s Graham here. So for some reason, ever since I was a kid, I’ve been fascinated with reading and studying up on millionaire habits. Like, it’s really fun to think that you’ve discovered this cheat code to making money that involves…
Interpreting bar graphs (alligators) | Math | 3rd grade | Khan Academy
James counted the number of alligators in various local bodies of water and graphed the results. How many fewer alligators are in Bite Swamp than Chomp Lake and Reptile Creek combined? So down here we have this bar graph that Jam somehow survived to crea…
Functions defined by definite integrals (accumulation functions) | AP Calculus AB | Khan Academy
You’ve already spent a lot of your mathematical lives talking about functions. The basic idea is: give a valid input into a function, so a member of that function’s domain, and then the function is going to tell you for that input what is going to be the …