yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reversible reactions and equilibrium | High school chemistry | Khan Academy


2m read
·Nov 10, 2024

Let's imagine a reaction where we start with the reactants A and B, and they react to form the products C and D. Now, it turns out that in certain situations, the reaction could go the other way. You could start with C + D, and those could react to end up with A + B.

So, when you have a reaction like this that could go in either direction, we call that a reversible reaction. That's why the title of this video is "Reversible Reactions and Equilibrium." One way to say that it could go in either direction is to write it like this: A + B, and we use these half arrows.

So, it could go in that direction, or it could go in this direction. You could go to C + D. What's going to happen is the reaction is going to go in both directions. So, A + B is going to react to form C + D, and C + D is going to react to form A + B.

At some point, you're going to be hitting an equilibrium. That's the point at which the forward reaction is happening at the same rate as, I guess, you could consider it to be the backward reaction going from C + D to A + B.

Now, once you're at equilibrium, it doesn't mean that the reactions stop. It just means that the rate of going from A + B to C + D is the same as the rate of going from C + D to A + B. This is a really important thing to realize. A common misconception is that people think at equilibrium, somehow these reactions stop.

That is not the case. It's just that the rate of the forward reaction and the backward reaction has now become the same rate. So, even though you continue to have A + B forming C + D, you have the same rate at which C + D is now also going and forming A + B.

Another misconception here is that the concentrations of A, B, C, and D, once you're in equilibrium, would have stabilized. But it's not necessarily that the concentrations are equal. The point at which we're in equilibrium, you might have a much lower concentration of C and D than A or B, or the other way around.

What equilibrium is telling us is that, at equilibrium, the forward rate of reaction is equal to the backward rate of reaction.

More Articles

View All
Locked Down? Here's How to Be Free
“The only way to deal with an unfree world is to become so absolutely free that your very existence is an act of rebellion.” Albert Camus. When our movement is restricted, chances are high that we feel trapped. No matter if we are in prison, in a mental …
How to build a relationship with your buyers.
Right now, you have the two ADXs, two ox, one’s matte and one’s shiny inside. How much you think you’re flying each of them? 350 each? That’s a pretty good usage on those airplanes as they’re mostly flying around. I have a brother who lives in it, goes t…
Invertible matrices and transformations | Matrices | Precalculus | Khan Academy
We have two two by two matrices here. In other videos, we talk about how a two by two matrix can represent a transformation of the coordinate plane, of the two-dimensional plane, where this, of course, is the x-axis, and this, of course, is the y-axis. W…
Hitching a ride with the Gabra tribe's camel train | Primal Survivor: Extreme African Safari
But just as I was giving up hope, on the horizon… Thank God. Honestly. Thank God. HAZEN: There they are. I got them. It’s the camel train. (camel bellows) (man shouting) HAZEN: Yes! HAZEN: So, this is the camel train, look at how… It’s amazing. Wow, I …
Lao Tzu - The Art of Not Trying
This episode of after skool was written by Einzelgänger. Those who stand on tiptoes do not stand firmly; those who rush ahead don’t get very far; those who try to outshine others dim their own light. Taoists have long observed that humans often act in co…
How Does A Slinky Fall?
[Applause] [Music] Now, at some point growing up, most of us have been captivated by one of these: a slinky. But recently, I found out one of the most mesmerizing things about how it moves is something I’d never seen before: how it falls. So what’s so s…