yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Estimating decimal addition (thousandths) | Adding decimals | Grade 5 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

So we have two questions here, but don't stress out. Anytime I even see a lot of decimals, I'm like, okay, is this going to be a lot of hairy arithmetic? But what we see here, it does not say what 8.37 + 4926 is equal to. The equal sign is squiggly. That means, what is this roughly equal to? What is this approximately equal to? Or what can we estimate this sum?

So what I want you to do is estimate this sum, and then I want you to estimate this sum, and then we will work through it together. All right, now let's do it together. So the way I'll do this first one, I'm just going to round each of these to the nearest whole number.

So if I'm rounding to the nearest whole number, I could say, okay, is this going to be closer to eight if we round down, or is it going to be closer to nine? We know that it's a little bit more than eight, so it's between eight and nine. This is clearly, if we look at the ten's place, it's closer to eight than it is to nine.

So this is, I could say, approximately equal to 8. And then if I were to do that with the second number, we can clearly see, especially if we look at the 10's place, that this number is between four and five, but it is much closer to five than it is to four. So in this situation, we would round up. So this is going to be approximately equal to five.

So we could say this whole thing is approximately equal to, roughly equal to 8 + 5, which of course is 13. So if someone were to walk up to you on the street and said, "What's 8.37 plus 4926?" You’re like, "Oh, maybe I need some paper," say, "No, I just want a rough sense of what you think it is."

Well, okay, it's, you know, this is roughly eight, this is roughly five, this is going to be roughly 13. Well, let's do the same thing right over here. Well, here you might be tempted to say, okay, if we round to the nearest one, this one right over here is between zero and one. Well, this one we would maybe round up to one; this one is a little bit closer to zero than it is to one, so we round down to zero.

And maybe you say this is roughly 1 + 0, which is one, and that might be okay. But if you don't have any ones place here, it wouldn't make sense to round to the nearest one when you're approximating or when you're trying to get an estimate. Instead, I would round to the nearest tenth in this situation.

So for example, this first number right over here, 0.718, it's between 0.7 and 0.8. It's a little bit more than 0.7. And to realize which one it's closer to, you go to the hundredth place, you're like, okay, it's much closer to 0.7 than it is to 0.8. So I would say this is roughly equal to that.

And then I would do the same thing over here. I would look at the hundredth place. I know that this number here is between, let me do this in a different color, this number here is between 0.4 at the low end and 0.5. It's more than 0.4, and when you look at the tenth place, it's pretty clear that we're closer to 0.5.

So this first number is roughly equal to 0.7, the second number is roughly equal to 0.5. And so if I were to estimate the sum, what's 0.7 + 0.5? Or what's 710 + 510? Well, you might say, "Hey, that's 1210," and 1210 is the same thing as one whole and 2/10, or 1.2.

Or another way to think about it is 7 + 5 is 12, then 7 + 0.5 is 1.2, which you could do in your head if someone were to just walk up to you on the street and ask you that. And that's actually a pretty good approximation, a pretty good estimate.

More Articles

View All
Examples establishing conditions for MVT
This table gives us a few values of the function g, so we know what g of x is equal to at these values right over here: x is equal to negative 2, negative 1, 0, and 1. It says Raphael said that since g of 1 minus g of 0 over 1 minus 0 is equal to negative…
Journey Into Old Havana's Vibrant History | National Geographic
[Music] With diverse indigenous African and European roots, Havana’s culture and architecture reflect Cuba’s complex history of conquest, slavery, liberation, and revolution. [Music] Chosen for its strategic location on the island’s northwestern coast in …
The Parker Solar Probe - Smarter Every Day 198
Have you ever figured something else, and you tried to explain it to someone else and they just didn’t believe you? This is the story about a man named Eugene Parker who, in 1958, wrote a paper about solar winds. NASA has named about 20 spacecraft after d…
The ideal gas law (PV = nRT) | Intermolecular forces and properties | AP Chemistry | Khan Academy
In this video, we’re going to talk about ideal gases and how we can describe what’s going on with them. So the first question you might be wondering is, what is an ideal gas? It really is a bit of a theoretical construct that helps us describe a lot of wh…
My Sister Got Malaria ....(And I Didn't) - Smarter Every Day 167
Video about global health issues. Now, here’s the deal: when you think about—let’s make a video about global health issues—you think about statistics and numbers and like money, or you think about your sister who served in the Peace Corps in Sub-Saharan A…
Integration with partial fractions | AP Calculus BC | Khan Academy
[Instructor] We are asked to find the value of this indefinite integral. And some of you, in attempting this, might try to say, all right, is the numerator here the derivative or a constant multiple of the derivative of the denominator? In which case, u-s…