yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Influential points in regression | AP Statistics | Khan Academy


3m read
·Nov 10, 2024

I'm pretty sure I just tore my calf muscle this morning while sprinting with my son. But the math must not stop, so I'm here to help us think about what we could call influential points when we're thinking about regressions.

To help us here, I have this tool from BFW Publishing. I encourage you to go here and use this tool yourself. What it allows us to do is to draw some points. So just like that, let me draw some points and then fit a least squares line.

So that's a least squares line right over there. You can not only see the line, but we can see our correlation coefficient. It's pretty good: 0.8156. It's pretty close to 1, so we have a pretty good fit right over here.

But we're going to think about points that might influence or might be overly influential, we could say, to different aspects of this regression line.

One type of influential point is known as an outlier. A good way of identifying an outlier is that it's a very bad fit to the line or it has a very large residual. So if I put a point right over here, that is an outlier.

So what happens when we have an outlier like that? Before, we had a correlation coefficient of 0.8 something. You put one outlier like that out of, it's now one of 16 points. It dramatically lowered our correlation coefficient because we have a really large residual right over here.

So an outlier like this has been very influential on the correlation coefficient. It didn't impact the slope of the line a tremendous amount; it did a little bit. Actually, when I put it there, it didn't impact the slope much at all. It does impact the y-intercept a little bit. Actually, when I put it out here, it doesn't impact the y-intercept much at all. If I put it a little bit more to the left, it impacts it a little bit.

But these outliers that are at least close to the mean x value seem to be most relevant in terms of impacting or most influential in terms of the correlation coefficient.

Now, what about an outlier that's further away from the mean x value? Something, a point whose x value is further away from the mean x values, is considered a high leverage point. The way you could think about that is if you imagine this as being some type of a seesaw, somehow pivoted on the mean x value.

Well, if you put a point out here, it looks like it's pivoting down. It's like someone's sitting at this end of the seesaw, and so that's where I think the term "leverage" comes from. You can see, when I put an outlier—a high leverage outlier—out here, that does many things.

It definitely drops the correlation coefficient. It changes the slope and it changes the y-intercept, so it does a lot of things. It's highly influential for everything I just talked about.

Now, if I have a high leverage point that's maybe a little bit less of an outlier, something like this—based on the points that I happen to have—it didn't hurt the correlation coefficient. In fact, in that example, it actually improved it a little bit. But it did change the y-intercept a bit, and it did change the slope a bit, although obviously not as dramatic as when you do something like that, which then kills the correlation coefficient as well.

Let's see what happens if we do things over here. If I have a high leverage outlier over here, you see the same thing: a high leverage outlier seems to influence everything.

If it is a high leverage point that is less of an outlier, actually, once again it improved the correlation coefficient. You could say that it's still influential on the correlation coefficient; in this case, it's improving it. But it's less influential in terms of the slope and the y-intercept, although it is making a difference there.

So I encourage you to play with this. Think about different points—how far they are away from the mean x value, how large of a residual they have, are they an outlier, and how influential they are to the various aspects of a least squares line: the slope, the y-intercept, or the correlation coefficient.

When we're talking about the correlation coefficient, also known as the r value, which is, of course, the square root of r squared.

More Articles

View All
TRUMP JUST STORMED WALL STREET
What’s up, grab it’s guys here. So, normally I don’t make videos like this, and I tend to stay away from anything involving politics. But today we gotta talk about one of the most requested topics of investing that stands to make or lose people a lot of m…
Multi step addition word problem
We’re told that Joe started his math homework. He finished 23 problems by himself. He finished 13 more problems with help from Sal. I don’t know if they’re talking about me or not. And then they say there are nine math problems left. And then they ask us…
Why I'm Selling
What’s up guys, it’s Graham here. So, as most of you know, since I’ve started the channel and really for the last 10 years, I’ve dedicated the majority of my efforts and my money towards investing in real estate, with a lot of it documented here in the ch…
Reasons To Stop Worrying (Break The Habit of Excessive Thinking)
The ability to plan for the future is a cornerstone of our civilization. The human race would never have flourished if we didn’t organize, arrange, design, prepare, and delay gratification for greater causes. Take, for example, this structure: the Kölner…
Finding height of a parallelogram
The parallelogram shown below has an area of 24 units squared or square units. Find the missing height. So, here’s the parallelogram. This side has length six, this side has length five, and we want to find the missing height. They gave us the area, so p…
My Response To Jubilee | Do All Millionaires Think The Same
What’s up guys? It’s Graham here. So you may have just recently seen the Jubilee has posted the video with the title “Do All Millionaires Think the Same?” It’s part of their spectrum series where they pick a small group of people, say a statement, and th…