yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Influential points in regression | AP Statistics | Khan Academy


3m read
·Nov 10, 2024

I'm pretty sure I just tore my calf muscle this morning while sprinting with my son. But the math must not stop, so I'm here to help us think about what we could call influential points when we're thinking about regressions.

To help us here, I have this tool from BFW Publishing. I encourage you to go here and use this tool yourself. What it allows us to do is to draw some points. So just like that, let me draw some points and then fit a least squares line.

So that's a least squares line right over there. You can not only see the line, but we can see our correlation coefficient. It's pretty good: 0.8156. It's pretty close to 1, so we have a pretty good fit right over here.

But we're going to think about points that might influence or might be overly influential, we could say, to different aspects of this regression line.

One type of influential point is known as an outlier. A good way of identifying an outlier is that it's a very bad fit to the line or it has a very large residual. So if I put a point right over here, that is an outlier.

So what happens when we have an outlier like that? Before, we had a correlation coefficient of 0.8 something. You put one outlier like that out of, it's now one of 16 points. It dramatically lowered our correlation coefficient because we have a really large residual right over here.

So an outlier like this has been very influential on the correlation coefficient. It didn't impact the slope of the line a tremendous amount; it did a little bit. Actually, when I put it there, it didn't impact the slope much at all. It does impact the y-intercept a little bit. Actually, when I put it out here, it doesn't impact the y-intercept much at all. If I put it a little bit more to the left, it impacts it a little bit.

But these outliers that are at least close to the mean x value seem to be most relevant in terms of impacting or most influential in terms of the correlation coefficient.

Now, what about an outlier that's further away from the mean x value? Something, a point whose x value is further away from the mean x values, is considered a high leverage point. The way you could think about that is if you imagine this as being some type of a seesaw, somehow pivoted on the mean x value.

Well, if you put a point out here, it looks like it's pivoting down. It's like someone's sitting at this end of the seesaw, and so that's where I think the term "leverage" comes from. You can see, when I put an outlier—a high leverage outlier—out here, that does many things.

It definitely drops the correlation coefficient. It changes the slope and it changes the y-intercept, so it does a lot of things. It's highly influential for everything I just talked about.

Now, if I have a high leverage point that's maybe a little bit less of an outlier, something like this—based on the points that I happen to have—it didn't hurt the correlation coefficient. In fact, in that example, it actually improved it a little bit. But it did change the y-intercept a bit, and it did change the slope a bit, although obviously not as dramatic as when you do something like that, which then kills the correlation coefficient as well.

Let's see what happens if we do things over here. If I have a high leverage outlier over here, you see the same thing: a high leverage outlier seems to influence everything.

If it is a high leverage point that is less of an outlier, actually, once again it improved the correlation coefficient. You could say that it's still influential on the correlation coefficient; in this case, it's improving it. But it's less influential in terms of the slope and the y-intercept, although it is making a difference there.

So I encourage you to play with this. Think about different points—how far they are away from the mean x value, how large of a residual they have, are they an outlier, and how influential they are to the various aspects of a least squares line: the slope, the y-intercept, or the correlation coefficient.

When we're talking about the correlation coefficient, also known as the r value, which is, of course, the square root of r squared.

More Articles

View All
AP Microeconomics FRQ on perfect competition | AP(R) Microeconomics | Khan Academy
Is a type of question that you might see on an AP economics exam, and it’s talking about perfectly competitive markets. So it says a typical profit maximizing firm in a perfectly competitive constant cost industry is earning a positive economic profit. S…
Stoicism: Become Undefeatable
In the city of Cyprus in 300 BC, there lived a very wealthy trader called Zeno. While on a voyage from Phoenicia to Piraeus, his boat sank, along with all of his cargo. Because of that single event, an event that was entirely out of Zeno’s or anyone’s con…
Homeroom with Sal - Thursday, June 4
Hi everyone! Sal Khan here from Khan Academy. Welcome to our daily live stream. Uh, this is a way we’ve started this a couple of weeks, actually months ago now, as a way for all of us to stay connected during times of social distancing and school closures…
This Greek Cave is Teeming With History—and Bodies | National Geographic
Classical Greece didn’t just come out of nowhere. If you really want to understand where the Greece of Athens, the Greece of the Acropolis, came from, you need to look way back in the past. You need to look several thousand years back in the past at place…
Ice Fishing and Changing Diets (Clip) | Alaska: The Next Generation
It’s been a pretty heavy duty winter for us. It’s been a little rough. Whoa! You know, just staying at home and maintaining the farm. Go, go, go, go. No! The kids are kind of antsy if they’re cooped up for too long. We’re missing a chicken. I only count …
Pen Pal Experiment: Two Women Swap the Data of Their Daily Lives | Short Film Showcase
[Music] I’m Georgia. I am Italian, but I live in New York. I’m Stephanie. I was born in Denver, Colorado, but I’ve lived in London for the past 13 years. We met each other in person twice. When in September 2014, we decided to collaborate on a year-lon…