yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 5a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The figure above shows the graph of f prime, the derivative of a twice differentiable function f on the interval. It's a closed interval from negative three to four. The graph of f prime has horizontal tangents at x equals negative one, x equals one, and at x equals three. So you have a horizontal tangent right over a horizontal tangent right over there. Let me draw that a little bit neater, right over there a horizontal tangent right over there and a horizontal tangent right over there.

All right, the areas of the regions bounded by the x-axis and the graph of f-prime on the intervals negative two to one, closed intervals from negative two to one, so this region right over here, and the region from one to four, so this region right over there, they tell us have the areas are 9 and 12 respectively. So that area is 9 and that area is 12.

So part a: find all x coordinates at which f has a relative maximum; give a reason for your answer. All x coordinates at which f has a relative maximum. So you might say, "Oh look, this looks like a relative maximum over here," but this is an f; this is the graph of f prime. So let's think about what needs to be true for f to have a relative maximum at a point.

So let's—we are probably familiar with what relative maxima look like; they look like a little lump like that. They could also actually look like that, but since this is a differentiable function over the interval, we're probably not dealing with a relative maximum that looks like that.

And so what do we know about a relative maximum point? So let's say that's our relative maximum. Well, as we approach our relative maximum from values below that x value, we see that we have a positive slope; our function needs to be increasing.

So over here, we see f is increasing going into the relative maximum point. f is increasing, which means that the derivative of f, the derivative of f must be greater than zero. And then after we pass that maximum point, we see that our function needs to be decreasing. This is another color; we see that our function is decreasing right over here.

So f decreasing, which means that f prime of x needs to be less than zero. So our relative maximum point should happen at an x value where our first derivative transitions from being greater than 0 to being less than 0.

So what x values? Let me say this: so we have f has relative—let me just write shorthand—relative maximum at x values where f prime transitions from positive to negative. Let me write this a little bit neater to negative. And where do we see f prime transitioning from positive to negative? Well, over here we see that only happening once.

We see right here f prime is positive, positive, positive, and then it goes negative, negative, negative. So we see f prime is positive over here, and then right when we hit x equals negative two, f prime becomes negative.

f prime becomes negative, so we know that the function itself—not f prime—f must be increasing here because f prime is positive, and then our function f is decreasing here because f prime is negative. And so this happens at x equals two, so let me write that down: this happens at x equals two, this happens at x equals two, and we're done.

More Articles

View All
Why Life Seems to Speed Up as We Age
I remember when I was a kid waiting an hour for my favorite TV show to come on, which was Sharon, Lois & Bram. That felt like eternity, but as I’ve gotten older, everything seems to have sped up. Time is going much faster. That’s something virtually e…
15 Ways Successful People Stay Motivated
While most people struggle to get off the couch and start doing the work, successful people are masters at staying motivated and keep pushing the ball forward, and this is exactly how they do it. Welcome to Alux. First up: vision setting. Every journey n…
Starship | Fifth Flight Test
Attention all flight crew members. This is the final go/no-go poll for operations. Raptor one. Raptor one, let’s go. Raptor two, go. Stage one, go. Stage two, go. Flight director is go for launch. We have lift-off! [Music] Vehicles pitching. [Music] Do…
From TV Repairman to Artist, One Man Makes Art Out of Parts | Short Film Showcase
[Music] I saw a video once, and it showed the house of the future: TV set in the refrigerator, TV set in the counter, TV set everywhere. You know, controls for this, for that. There I thought, oh, this is funny. You’d have to have another room in the hous…
The Problem With Financial Minimalism
What’s up guys, it’s Graham here. So lately, I’ve noticed a big push towards the concept of financial minimalism. For those of you that are not aware, this is the concept in which you cut out every expense in your life that does not add to your overall e…
STOP SAVING MONEY | The Warning Of Hyper Inflation
What’s up? Grandma’s guys here. So, there’s no easy way to say this, but let’s just rip off the Band-Aid. Yes, it’s true, I’ve worn the same shirt now for the last few days so I wouldn’t have to do laundry. Oh, and yeah, inflation is spiraling out of cont…