yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 5a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The figure above shows the graph of f prime, the derivative of a twice differentiable function f on the interval. It's a closed interval from negative three to four. The graph of f prime has horizontal tangents at x equals negative one, x equals one, and at x equals three. So you have a horizontal tangent right over a horizontal tangent right over there. Let me draw that a little bit neater, right over there a horizontal tangent right over there and a horizontal tangent right over there.

All right, the areas of the regions bounded by the x-axis and the graph of f-prime on the intervals negative two to one, closed intervals from negative two to one, so this region right over here, and the region from one to four, so this region right over there, they tell us have the areas are 9 and 12 respectively. So that area is 9 and that area is 12.

So part a: find all x coordinates at which f has a relative maximum; give a reason for your answer. All x coordinates at which f has a relative maximum. So you might say, "Oh look, this looks like a relative maximum over here," but this is an f; this is the graph of f prime. So let's think about what needs to be true for f to have a relative maximum at a point.

So let's—we are probably familiar with what relative maxima look like; they look like a little lump like that. They could also actually look like that, but since this is a differentiable function over the interval, we're probably not dealing with a relative maximum that looks like that.

And so what do we know about a relative maximum point? So let's say that's our relative maximum. Well, as we approach our relative maximum from values below that x value, we see that we have a positive slope; our function needs to be increasing.

So over here, we see f is increasing going into the relative maximum point. f is increasing, which means that the derivative of f, the derivative of f must be greater than zero. And then after we pass that maximum point, we see that our function needs to be decreasing. This is another color; we see that our function is decreasing right over here.

So f decreasing, which means that f prime of x needs to be less than zero. So our relative maximum point should happen at an x value where our first derivative transitions from being greater than 0 to being less than 0.

So what x values? Let me say this: so we have f has relative—let me just write shorthand—relative maximum at x values where f prime transitions from positive to negative. Let me write this a little bit neater to negative. And where do we see f prime transitioning from positive to negative? Well, over here we see that only happening once.

We see right here f prime is positive, positive, positive, and then it goes negative, negative, negative. So we see f prime is positive over here, and then right when we hit x equals negative two, f prime becomes negative.

f prime becomes negative, so we know that the function itself—not f prime—f must be increasing here because f prime is positive, and then our function f is decreasing here because f prime is negative. And so this happens at x equals two, so let me write that down: this happens at x equals two, this happens at x equals two, and we're done.

More Articles

View All
Why Do Cameras Do This? | Rolling Shutter Explained - Smarter Every Day 172
What’s up? I’m Destin. This is Smarter Every Day. Get your phone out. You see that little camera assembly there? Let’s take it out of the phone. Yep. That’s what it looks like. So here’s what we’re going to do. The first thing we’re going to do is pop th…
Beware: The Inverted Yield Curve
Once of you guys, it’s Graham here. So every now and then, I like to deviate a bit from real estate and personal finance to discuss some other topics of importance, and this is one of them. That would be the inverted yield curve, and this is a topic that’…
Evaluating quotient of fractional exponents | Mathematics I | High School Math | Khan Academy
Let’s see if we can figure out what 256 to the 47th power divided by 2 to the 47th power is, and like always, pause the video and see if you can figure this out. All right, let’s work through this together. At first, you might find this kind of daunting,…
Sanskrit connections to English | World History | Khan Academy
In the 18th century, you start to have significant interaction between the English and the Indians, especially in the East Indian Company. And as part of that, you start to have Western scholars start to really study Sanskrit and the Vedas. As they do the…
Take Accountability to Earn Equity
Accountability is important because that’s how you’re going to get leverage. That’s how you’re going to get credibility. It’s also how you’re going to get equity. You’re gonna get a piece of the business when you’re negotiating with other people. Ultimat…
Standard normal table for proportion between values | AP Statistics | Khan Academy
A set of laptop prices are normally distributed with a mean of 750 and a standard deviation of 60. What proportion of laptop prices are between 624 and 768 dollars? So let’s think about what they are asking. We have a normal distribution for the prices, …