yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 5a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The figure above shows the graph of f prime, the derivative of a twice differentiable function f on the interval. It's a closed interval from negative three to four. The graph of f prime has horizontal tangents at x equals negative one, x equals one, and at x equals three. So you have a horizontal tangent right over a horizontal tangent right over there. Let me draw that a little bit neater, right over there a horizontal tangent right over there and a horizontal tangent right over there.

All right, the areas of the regions bounded by the x-axis and the graph of f-prime on the intervals negative two to one, closed intervals from negative two to one, so this region right over here, and the region from one to four, so this region right over there, they tell us have the areas are 9 and 12 respectively. So that area is 9 and that area is 12.

So part a: find all x coordinates at which f has a relative maximum; give a reason for your answer. All x coordinates at which f has a relative maximum. So you might say, "Oh look, this looks like a relative maximum over here," but this is an f; this is the graph of f prime. So let's think about what needs to be true for f to have a relative maximum at a point.

So let's—we are probably familiar with what relative maxima look like; they look like a little lump like that. They could also actually look like that, but since this is a differentiable function over the interval, we're probably not dealing with a relative maximum that looks like that.

And so what do we know about a relative maximum point? So let's say that's our relative maximum. Well, as we approach our relative maximum from values below that x value, we see that we have a positive slope; our function needs to be increasing.

So over here, we see f is increasing going into the relative maximum point. f is increasing, which means that the derivative of f, the derivative of f must be greater than zero. And then after we pass that maximum point, we see that our function needs to be decreasing. This is another color; we see that our function is decreasing right over here.

So f decreasing, which means that f prime of x needs to be less than zero. So our relative maximum point should happen at an x value where our first derivative transitions from being greater than 0 to being less than 0.

So what x values? Let me say this: so we have f has relative—let me just write shorthand—relative maximum at x values where f prime transitions from positive to negative. Let me write this a little bit neater to negative. And where do we see f prime transitioning from positive to negative? Well, over here we see that only happening once.

We see right here f prime is positive, positive, positive, and then it goes negative, negative, negative. So we see f prime is positive over here, and then right when we hit x equals negative two, f prime becomes negative.

f prime becomes negative, so we know that the function itself—not f prime—f must be increasing here because f prime is positive, and then our function f is decreasing here because f prime is negative. And so this happens at x equals two, so let me write that down: this happens at x equals two, this happens at x equals two, and we're done.

More Articles

View All
Meet the World’s First All-Female Team Created to Combat Poaching | Short Film Showcase
The old-school conservationists laughed at us. They said, “It’s never gonna work.” I’m 25 years old and one of the Black Mambas. I’m looking at other Black Mambas and approaching the unit. They’re always very, very shy at the beginning, and then they get …
Impactful Things To Copy From Successful People
If you were to copy just a few things from successful people, the things that have the most impact in your life, what would those things be? Well, this is exactly what we’re talking about in this video: the most impactful things you can copy from highly s…
Talk about doing things that don’t scale. From Doordash’s YC app in 2013.
And the four of us came together about 6 months ago to work on software for small business owners, but we didn’t have a need at first. So we just went out and talked to all the small business owners we could find. After over a 100 interviews, we came acro…
Holland vs the Netherlands
Welcome to the Great nation of Holland: where the tulips grow, the windmills turn, the breakfast is chocolatey, the people industrious, and the sea tries to drown it all. Except, this country isn’t Holland. It’s time for: The Difference Between Holland, t…
Phishing attacks | Internet safety | Khan Academy
Let’s say you get an email like this where it looks like it is from PayPal. It says “response required” really big, so this is a little bit scary. It says, “Dear you, we emailed you a little while ago to ask you for your help resolving an issue with your …
Khan Academy Needs Your Help To Keep Going
Hi, Sal Khan here from Khan Academy. I’m just here to remind everyone that Khan Academy is a not-for-profit organization with the mission of providing a free, world-class education for anyone, anywhere. We can only do that work through philanthropic dona…