yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 5a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The figure above shows the graph of f prime, the derivative of a twice differentiable function f on the interval. It's a closed interval from negative three to four. The graph of f prime has horizontal tangents at x equals negative one, x equals one, and at x equals three. So you have a horizontal tangent right over a horizontal tangent right over there. Let me draw that a little bit neater, right over there a horizontal tangent right over there and a horizontal tangent right over there.

All right, the areas of the regions bounded by the x-axis and the graph of f-prime on the intervals negative two to one, closed intervals from negative two to one, so this region right over here, and the region from one to four, so this region right over there, they tell us have the areas are 9 and 12 respectively. So that area is 9 and that area is 12.

So part a: find all x coordinates at which f has a relative maximum; give a reason for your answer. All x coordinates at which f has a relative maximum. So you might say, "Oh look, this looks like a relative maximum over here," but this is an f; this is the graph of f prime. So let's think about what needs to be true for f to have a relative maximum at a point.

So let's—we are probably familiar with what relative maxima look like; they look like a little lump like that. They could also actually look like that, but since this is a differentiable function over the interval, we're probably not dealing with a relative maximum that looks like that.

And so what do we know about a relative maximum point? So let's say that's our relative maximum. Well, as we approach our relative maximum from values below that x value, we see that we have a positive slope; our function needs to be increasing.

So over here, we see f is increasing going into the relative maximum point. f is increasing, which means that the derivative of f, the derivative of f must be greater than zero. And then after we pass that maximum point, we see that our function needs to be decreasing. This is another color; we see that our function is decreasing right over here.

So f decreasing, which means that f prime of x needs to be less than zero. So our relative maximum point should happen at an x value where our first derivative transitions from being greater than 0 to being less than 0.

So what x values? Let me say this: so we have f has relative—let me just write shorthand—relative maximum at x values where f prime transitions from positive to negative. Let me write this a little bit neater to negative. And where do we see f prime transitioning from positive to negative? Well, over here we see that only happening once.

We see right here f prime is positive, positive, positive, and then it goes negative, negative, negative. So we see f prime is positive over here, and then right when we hit x equals negative two, f prime becomes negative.

f prime becomes negative, so we know that the function itself—not f prime—f must be increasing here because f prime is positive, and then our function f is decreasing here because f prime is negative. And so this happens at x equals two, so let me write that down: this happens at x equals two, this happens at x equals two, and we're done.

More Articles

View All
Sal Khan & John Dickerson: introduction | US government and civics | Khan Academy
So, Sal here from Khan Academy, and I’m excited to be here with John Dickerson, co-host of CBS This Morning. And I’m excited to be here too! Some of y’all might be wondering what we are doing together. We are going to be talking about civics and governme…
Overview of the Middle Ages | World History | Khan Academy
Growing up, we all have impressions of the Middle Ages. We read about knights in shining armor, castles with moats, and towers. But when were the Middle Ages? The simple answer: the Middle Ages in Europe are the roughly 1,000 years from the fall of the Ro…
Importing modules | Intro to CS - Python | Khan Academy
If you were building a bike, you would probably go off and get a seat, a set of handlebars, a set of tires, and then assemble those pieces together. You wouldn’t harvest your own rubber and try and forge a tire from scratch. With programming, we do the sa…
Ionic solids | Intermolecular forces and properties | AP Chemistry | Khan Academy
Let’s talk a little bit about ionic solids, which you can imagine are solids formed by ions. So let’s think a little bit about these ions. For example, we could look at group one elements here, especially things like lithium, sodium, or potassium. In many…
Impactful Things To Copy From Successful People
If you were to copy just a few things from successful people, the things that have the most impact in your life, what would those things be? Well, this is exactly what we’re talking about in this video: the most impactful things you can copy from highly s…
Mapping the Future of Global Civilization | Nat Geo Live
That world of political geography is not going away. But, at the same time, we are engaging in this topographical engineering. These very robust engineering systems by which we modify the planet to suit what we want it to do, what our various economic and…