yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 5a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The figure above shows the graph of f prime, the derivative of a twice differentiable function f on the interval. It's a closed interval from negative three to four. The graph of f prime has horizontal tangents at x equals negative one, x equals one, and at x equals three. So you have a horizontal tangent right over a horizontal tangent right over there. Let me draw that a little bit neater, right over there a horizontal tangent right over there and a horizontal tangent right over there.

All right, the areas of the regions bounded by the x-axis and the graph of f-prime on the intervals negative two to one, closed intervals from negative two to one, so this region right over here, and the region from one to four, so this region right over there, they tell us have the areas are 9 and 12 respectively. So that area is 9 and that area is 12.

So part a: find all x coordinates at which f has a relative maximum; give a reason for your answer. All x coordinates at which f has a relative maximum. So you might say, "Oh look, this looks like a relative maximum over here," but this is an f; this is the graph of f prime. So let's think about what needs to be true for f to have a relative maximum at a point.

So let's—we are probably familiar with what relative maxima look like; they look like a little lump like that. They could also actually look like that, but since this is a differentiable function over the interval, we're probably not dealing with a relative maximum that looks like that.

And so what do we know about a relative maximum point? So let's say that's our relative maximum. Well, as we approach our relative maximum from values below that x value, we see that we have a positive slope; our function needs to be increasing.

So over here, we see f is increasing going into the relative maximum point. f is increasing, which means that the derivative of f, the derivative of f must be greater than zero. And then after we pass that maximum point, we see that our function needs to be decreasing. This is another color; we see that our function is decreasing right over here.

So f decreasing, which means that f prime of x needs to be less than zero. So our relative maximum point should happen at an x value where our first derivative transitions from being greater than 0 to being less than 0.

So what x values? Let me say this: so we have f has relative—let me just write shorthand—relative maximum at x values where f prime transitions from positive to negative. Let me write this a little bit neater to negative. And where do we see f prime transitioning from positive to negative? Well, over here we see that only happening once.

We see right here f prime is positive, positive, positive, and then it goes negative, negative, negative. So we see f prime is positive over here, and then right when we hit x equals negative two, f prime becomes negative.

f prime becomes negative, so we know that the function itself—not f prime—f must be increasing here because f prime is positive, and then our function f is decreasing here because f prime is negative. And so this happens at x equals two, so let me write that down: this happens at x equals two, this happens at x equals two, and we're done.

More Articles

View All
The Search for a Genetic Disease Cure | Explorer
Iceland’s Decode Laboratories is one of the world’s leading genetic research facilities. Decode has been running large genomic studies now, in fact, for decades. They really did pioneer the standard approach, where what you do is enroll individuals into s…
Photographing America’s Wounded Soldiers in Iraq | Nat Geo Live
In 2004, I got a call from LIFE magazine. They said we have this incredible assignment for you. It’s to photograph the wounded coming out of Fallujah. When we flew in, this is one of the first scenes I saw. This is on my birthday in 2004, and it was durin…
10 THINGS YOU SHOULD DO EVERY MORNING (STOIC MORNING ROUTINE) | STOICISM INSIGHTS
Welcome back, Stoicism Insights family, it’s great to have you here with us again. Today, we’re delving into a topic that’s close to the heart of Stoic philosophy, the art of crafting the perfect morning routine. But this isn’t just any morning routine, i…
Homeroom with Sal & Marley Dias - Thursday, November 12
Hi everyone! Sal Khan here. Welcome to the Homeroom live stream. Before we jump into our very exciting conversation with our guest Marley Diaz, I’ll give my standard announcements. A reminder that we are a not-for-profit organization, so if you’re in a po…
Khan Academy Sample Zoom Class
Hey everyone, this is Jeremy Shifling at Khan Academy. Um, thank you so much for making time out of your busy back-to-school season to join us today. You know, there’s a ton going on in your class and in the world, and so I want to make the next 30 minute…
Reshma Shetty, Founder of Ginkgo Bioworks at the Female Founders Conference
Thank you all for being here today. It’s a real honor to be around such an amazing group of women. I’d like to thank Sharon and Kat for inviting me to come talk to you all. It’s a real honor. As Jessica said, I’m a co-founder of a company called Topeka Bi…