yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 5a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The figure above shows the graph of f prime, the derivative of a twice differentiable function f on the interval. It's a closed interval from negative three to four. The graph of f prime has horizontal tangents at x equals negative one, x equals one, and at x equals three. So you have a horizontal tangent right over a horizontal tangent right over there. Let me draw that a little bit neater, right over there a horizontal tangent right over there and a horizontal tangent right over there.

All right, the areas of the regions bounded by the x-axis and the graph of f-prime on the intervals negative two to one, closed intervals from negative two to one, so this region right over here, and the region from one to four, so this region right over there, they tell us have the areas are 9 and 12 respectively. So that area is 9 and that area is 12.

So part a: find all x coordinates at which f has a relative maximum; give a reason for your answer. All x coordinates at which f has a relative maximum. So you might say, "Oh look, this looks like a relative maximum over here," but this is an f; this is the graph of f prime. So let's think about what needs to be true for f to have a relative maximum at a point.

So let's—we are probably familiar with what relative maxima look like; they look like a little lump like that. They could also actually look like that, but since this is a differentiable function over the interval, we're probably not dealing with a relative maximum that looks like that.

And so what do we know about a relative maximum point? So let's say that's our relative maximum. Well, as we approach our relative maximum from values below that x value, we see that we have a positive slope; our function needs to be increasing.

So over here, we see f is increasing going into the relative maximum point. f is increasing, which means that the derivative of f, the derivative of f must be greater than zero. And then after we pass that maximum point, we see that our function needs to be decreasing. This is another color; we see that our function is decreasing right over here.

So f decreasing, which means that f prime of x needs to be less than zero. So our relative maximum point should happen at an x value where our first derivative transitions from being greater than 0 to being less than 0.

So what x values? Let me say this: so we have f has relative—let me just write shorthand—relative maximum at x values where f prime transitions from positive to negative. Let me write this a little bit neater to negative. And where do we see f prime transitioning from positive to negative? Well, over here we see that only happening once.

We see right here f prime is positive, positive, positive, and then it goes negative, negative, negative. So we see f prime is positive over here, and then right when we hit x equals negative two, f prime becomes negative.

f prime becomes negative, so we know that the function itself—not f prime—f must be increasing here because f prime is positive, and then our function f is decreasing here because f prime is negative. And so this happens at x equals two, so let me write that down: this happens at x equals two, this happens at x equals two, and we're done.

More Articles

View All
Casey Neistat and Matt Hackett on Live Video's Struggle for Interestingness
I mean, didn’t Google just announce last week some clip-on camera that captures what’s in front of you? In typical Google form, they pitched it though. It’s like this is the center of our AI learning platform about the world, which is the same marketing m…
Mr. Freeman, part 59
Have you noticed what happened to words? What are you saying there, again? Ew-w-w! Your words seem to have decayed! Spoiled! Well, they still look and sound the same, but you know, what is the problem? THEY MEAN BUGGER ALL!!! Look for yourself. At some p…
Live for Today. Hope for Tomorrow.
Once there was a Chinese farmer who had a horse that he would tend his crops with every morning. One day, out of the blue, the horse ran off. All the villagers approached the farmer and offered their sympathies. “My, what bad luck you’ve had,” they echoe…
New High Speed Camera, Road Trip & a Mousetrap Challenge | Smarter Every Day 56
Hey, it’s me, Destin. So, I feel like I owe you an apology for not making videos the last couple of weeks, but when I explain why, I hope you will accept my apology. So, it started like this. I got something in the mail. Turns out it is the new Phantom c…
The Upcoming 2021 Real Estate Collapse Explained
What’s up you guys, it’s Graham here. So today we’re literally going to be talking about my favorite topic in the entire world. And I know you think this might be a setup for me to say, “And that topic is asking you to smash that like button for the YouTu…
When to walk away
Most people don’t want to be cowards. Generally, we want to stand our ground, not give up what we have, and hang in there until things get better. For example, we don’t want to be quitters, so we keep working at our jobs, even though the environment is to…