yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 5a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The figure above shows the graph of f prime, the derivative of a twice differentiable function f on the interval. It's a closed interval from negative three to four. The graph of f prime has horizontal tangents at x equals negative one, x equals one, and at x equals three. So you have a horizontal tangent right over a horizontal tangent right over there. Let me draw that a little bit neater, right over there a horizontal tangent right over there and a horizontal tangent right over there.

All right, the areas of the regions bounded by the x-axis and the graph of f-prime on the intervals negative two to one, closed intervals from negative two to one, so this region right over here, and the region from one to four, so this region right over there, they tell us have the areas are 9 and 12 respectively. So that area is 9 and that area is 12.

So part a: find all x coordinates at which f has a relative maximum; give a reason for your answer. All x coordinates at which f has a relative maximum. So you might say, "Oh look, this looks like a relative maximum over here," but this is an f; this is the graph of f prime. So let's think about what needs to be true for f to have a relative maximum at a point.

So let's—we are probably familiar with what relative maxima look like; they look like a little lump like that. They could also actually look like that, but since this is a differentiable function over the interval, we're probably not dealing with a relative maximum that looks like that.

And so what do we know about a relative maximum point? So let's say that's our relative maximum. Well, as we approach our relative maximum from values below that x value, we see that we have a positive slope; our function needs to be increasing.

So over here, we see f is increasing going into the relative maximum point. f is increasing, which means that the derivative of f, the derivative of f must be greater than zero. And then after we pass that maximum point, we see that our function needs to be decreasing. This is another color; we see that our function is decreasing right over here.

So f decreasing, which means that f prime of x needs to be less than zero. So our relative maximum point should happen at an x value where our first derivative transitions from being greater than 0 to being less than 0.

So what x values? Let me say this: so we have f has relative—let me just write shorthand—relative maximum at x values where f prime transitions from positive to negative. Let me write this a little bit neater to negative. And where do we see f prime transitioning from positive to negative? Well, over here we see that only happening once.

We see right here f prime is positive, positive, positive, and then it goes negative, negative, negative. So we see f prime is positive over here, and then right when we hit x equals negative two, f prime becomes negative.

f prime becomes negative, so we know that the function itself—not f prime—f must be increasing here because f prime is positive, and then our function f is decreasing here because f prime is negative. And so this happens at x equals two, so let me write that down: this happens at x equals two, this happens at x equals two, and we're done.

More Articles

View All
Exploring the Glaciers of Snoqualmie National Forest | National Geographic
Nature, the most powerful creative force on earth. (intense orchestral music) I’m Chef Melissa King. Cooking has taken me to incredible places. Magical. From TV competitions and celebrity galas to countries around the world. I’m heading out to places I’ve…
If You Were a Tree... - Fan Questions | StarTalk
I’d want to be planted in a wide-open meadow so that every one of my branches can receive all the sunlight at once. I don’t want to have to compete for the photons from the Sun, which is what goes on daily, hourly, in a forest, especially rainforests wher…
A day in my life in Japan VLOG -Yummy Japanese food ,Apple Store , Studying
Good morning! Oh no, hi guys! It’s me, Judy. Today, I’m back with another vlog. Today, I’m going to be showing you guys a day in my life in Japan. Let’s start the day with our breakfast. The non-negotiable breakfast at my grandparents’ house is at seven a…
Khan Academy Live: SAT Writing
Hello and welcome back to Khan Academy live SAT. I’m Eric, I’m an SAT tutor and one of the SAT experts here at Khan Academy. Today is our third and final class as a part of this series. We’ve covered SAT Math two weeks ago, last week we covered SAT Readin…
The derivative & tangent line equations | Derivatives introduction | AP Calculus AB | Khan Academy
We’re told that the tangent line to the graph of function at the point (2, 3) passes through the point (7, 6). Find f prime of 2. So whenever you see something like this, it doesn’t hurt to try to visualize it. You might want to draw it out or just visua…
Rotations: description to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy
We’re told that Julia rotated triangle ABC counterclockwise about the origin by 180° to create triangle A’B’C’. Write a rule that describes this transformation. So why don’t you pause this video and see if you can do that on your own before we do this tog…