yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 5a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The figure above shows the graph of f prime, the derivative of a twice differentiable function f on the interval. It's a closed interval from negative three to four. The graph of f prime has horizontal tangents at x equals negative one, x equals one, and at x equals three. So you have a horizontal tangent right over a horizontal tangent right over there. Let me draw that a little bit neater, right over there a horizontal tangent right over there and a horizontal tangent right over there.

All right, the areas of the regions bounded by the x-axis and the graph of f-prime on the intervals negative two to one, closed intervals from negative two to one, so this region right over here, and the region from one to four, so this region right over there, they tell us have the areas are 9 and 12 respectively. So that area is 9 and that area is 12.

So part a: find all x coordinates at which f has a relative maximum; give a reason for your answer. All x coordinates at which f has a relative maximum. So you might say, "Oh look, this looks like a relative maximum over here," but this is an f; this is the graph of f prime. So let's think about what needs to be true for f to have a relative maximum at a point.

So let's—we are probably familiar with what relative maxima look like; they look like a little lump like that. They could also actually look like that, but since this is a differentiable function over the interval, we're probably not dealing with a relative maximum that looks like that.

And so what do we know about a relative maximum point? So let's say that's our relative maximum. Well, as we approach our relative maximum from values below that x value, we see that we have a positive slope; our function needs to be increasing.

So over here, we see f is increasing going into the relative maximum point. f is increasing, which means that the derivative of f, the derivative of f must be greater than zero. And then after we pass that maximum point, we see that our function needs to be decreasing. This is another color; we see that our function is decreasing right over here.

So f decreasing, which means that f prime of x needs to be less than zero. So our relative maximum point should happen at an x value where our first derivative transitions from being greater than 0 to being less than 0.

So what x values? Let me say this: so we have f has relative—let me just write shorthand—relative maximum at x values where f prime transitions from positive to negative. Let me write this a little bit neater to negative. And where do we see f prime transitioning from positive to negative? Well, over here we see that only happening once.

We see right here f prime is positive, positive, positive, and then it goes negative, negative, negative. So we see f prime is positive over here, and then right when we hit x equals negative two, f prime becomes negative.

f prime becomes negative, so we know that the function itself—not f prime—f must be increasing here because f prime is positive, and then our function f is decreasing here because f prime is negative. And so this happens at x equals two, so let me write that down: this happens at x equals two, this happens at x equals two, and we're done.

More Articles

View All
Hinduism Introduction: Core ideas of Brahman, Atman, Samsara and Moksha | History | Khan Academy
We’re now going to talk about Hinduism, which is one of the largest religions on Earth, practiced by over a billion people. It’s interesting for several reasons. First, it is considered to be one of the oldest religions that is still practiced. Some histo…
How do you make a Virtual Reality Glove? - Smarter Every Day 191
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I want this video to be long, and I want it to get down into the weeds and just air out and let me get as technical as I want to. In the last episode of Smarter Every Day, you got to see me interact…
Limitless with Chris Hemsworth | Official Trailer | Disney+
(Wind blowing) - You’re probably asking yourself why I’m dangling off a rope a thousand feet off the ground. I’m asking the same question. Well, Disney wanted to make a show about longevity. Turns out this has something to do with it. Here we go. (Dramat…
Why Some Animals Can't be Domesticated
Sheep… weren’t always this fluffy. We fluffy-fied them by breeding the fluffiest in each generation. This is domestication: sculpting wild animals for better human use. As we saw in Part 1, for early man, animals were powerful tools… food, clothing, trans…
1984 Tried To Warn You
Thank you. This is a YouTube video from the future. It’s 2030. Privacy is dead, and we’re happier than ever. Security cameras, dash cams, monitors, laptops, smartphones, even glasses—there are telescreens, sorry, cameras everywhere and we love them. We ca…
Growing Food on Mars | MARS: How to Survive on Mars
[Music] Another thing that we’re going to need when we go to Mars is food. Probably that’s going to mean growing some of your own food. We want to do that not by lugging everything from Earth but by using what’s already on Mars. That includes using the …