yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying constant of proportionality graphically


3m read
·Nov 11, 2024

We're asked what is the constant of proportionality between y and x in the graph. Just as a reminder, when we're talking about the constant of proportionality, it sounds like a very fancy thing, but it's not too bad.

If we're thinking about any xy pair on this line, let's say right over here we have some (x, y). If y is proportionate or is proportional to x, then that means we can say that y is equal to some constant, y is equal to some constant times x. And that constant, that is our constant of proportionality right over there.

Sometimes you will see this expressed if you divide both sides by x; sometimes you'll see this as ( \frac{y}{x} ) is equal to the constant of proportionality. It shows, for any xy pair, if you take your y divided by x, what do you get? That's the same thing.

So with that out of the way, see if you can answer their question: What is the constant of proportionality between y and x in the graph? Well, they very clearly give us a point right over here. This point is the point (3, 2). So we could set it up a few ways.

We could say, look, when y is equal to 2, x is equal to 3, and so 2 would need to be equal to some constant of proportionality times 3. If you wanted to solve for this, you just divide both sides by 3. So divide both sides by 3, and you would get that your constant of proportionality is ( \frac{2}{3} ).

Another way to do it right over here: well, here we've kind of already solved for a constant of proportionality. When x is 3, when x is 3, y is equal to 2. In either case, our constant of proportionality is ( \frac{2}{3} ).

Let's do another example. So here we have, which line has a constant of proportionality between y and x of ( \frac{5}{4} )? So pause the video and see if you can figure that out.

The key realization is we should test points on these lines; we should test xy pairs and say, well, look, if we take our y divided by x, do we get ( \frac{5}{4} )? Because that would be our constant of proportionality.

So let's first try line A right over here. So line A, let me find a point that sits on it. So that looks like a point that sits on it, and so if I take this, is the point (2, 5). If I took y divided by x, I would get a constant of proportionality as ( \frac{5}{2} ). So A is not going to be our answer. We want to get to a constant of proportionality of ( \frac{5}{4} ).

All right, let's try B. Okay, B, let me find a point on B. Looks like this is a point on B that is the point (4, 5). And so in this situation, k would be our y, which is 5, divided by our x, which is 4. So it looks like B is our choice. For kicks, you could also look at the constant of proportionality right over here.

Now there is one interesting example that I just want to touch on before we finish these examples. What about a situation where y is equal to x? What is the constant of proportionality then, and what would it look like as a line? Pause this video and think about it.

Well, there's really nothing new here; you just might not really see the constant of proportionality when you see it expressed this way. But y is equal to x is the same thing as y is equal to 1 times x.

And so then it might jump out at you that the constant of proportionality is 1 in this scenario right over here. Or if you took y divided by x, or if you took ( \frac{y}{x} ), you divide both sides by x, you would be left with the constant of proportionality, which would be equal to 1.

And if you wanted to graph it, well, it would just look like this: y would be equal to x for all x's. So that's what, when your constant of proportionality is 1, those would represent points on this orange line that I just constructed.

More Articles

View All
2015 AP Physics 1 free response 1a
Two blocks are connected by a string of negligible mass that passes over a massless pulley that turns with negligible friction. It is shown in the figure above. We see that the mass M2 of block 2 is greater than the mass M1 of block 1. The blocks are rele…
Identifying a sample and population | Study design | AP Statistics | Khan Academy
Administrators at Riverview High School surveyed a random sample of 100 of their seniors to see how they felt about the lunch offerings at the school’s cafeteria. So, you have all of the seniors; I’m assuming there’s more than a hundred of them. Then the…
How Does Kodak Make Film? (Kodak Factory Tour Part 1 of 3) - Smarter Every Day 271
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I love analog film photography. There’s something to me about being able to capture a memory in a physical object with light and physics and chemistry. It’s just beautiful. In a previous episode of…
Bertie Gregory's Favorite Moments | Animals Up Close | Disney+ | National Geographic
Devil Ray, Devil Ray, wow, it looks cool! Mother Nature has gifted me with so many incredible encounters and animals up close, and these are some of my favorite moments from this series. A real highlight for me in the Galapagos: but these guys can rack up…
Celebrate 10 years of Khan Academy! 🎂
Hello teachers, Sal here from the not-for-profit Khan Academy, and I just wanted to thank you for all of your partnership over the last 10 years. All of us here at Khan Academy—it’s much more than me now. We’re over 200 folks, including researchers, teac…
The 5 WORST Investing Mistakes for 2023 (Investing for Beginners)
This video is sponsored by Morning Brew. Sign up to their free daily newsletter using the link in the description. Okay, so 2023 is your year. You’re finally getting serious about your investing, and you’re going to take the time to knuckle down and set …