yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying constant of proportionality graphically


3m read
·Nov 11, 2024

We're asked what is the constant of proportionality between y and x in the graph. Just as a reminder, when we're talking about the constant of proportionality, it sounds like a very fancy thing, but it's not too bad.

If we're thinking about any xy pair on this line, let's say right over here we have some (x, y). If y is proportionate or is proportional to x, then that means we can say that y is equal to some constant, y is equal to some constant times x. And that constant, that is our constant of proportionality right over there.

Sometimes you will see this expressed if you divide both sides by x; sometimes you'll see this as ( \frac{y}{x} ) is equal to the constant of proportionality. It shows, for any xy pair, if you take your y divided by x, what do you get? That's the same thing.

So with that out of the way, see if you can answer their question: What is the constant of proportionality between y and x in the graph? Well, they very clearly give us a point right over here. This point is the point (3, 2). So we could set it up a few ways.

We could say, look, when y is equal to 2, x is equal to 3, and so 2 would need to be equal to some constant of proportionality times 3. If you wanted to solve for this, you just divide both sides by 3. So divide both sides by 3, and you would get that your constant of proportionality is ( \frac{2}{3} ).

Another way to do it right over here: well, here we've kind of already solved for a constant of proportionality. When x is 3, when x is 3, y is equal to 2. In either case, our constant of proportionality is ( \frac{2}{3} ).

Let's do another example. So here we have, which line has a constant of proportionality between y and x of ( \frac{5}{4} )? So pause the video and see if you can figure that out.

The key realization is we should test points on these lines; we should test xy pairs and say, well, look, if we take our y divided by x, do we get ( \frac{5}{4} )? Because that would be our constant of proportionality.

So let's first try line A right over here. So line A, let me find a point that sits on it. So that looks like a point that sits on it, and so if I take this, is the point (2, 5). If I took y divided by x, I would get a constant of proportionality as ( \frac{5}{2} ). So A is not going to be our answer. We want to get to a constant of proportionality of ( \frac{5}{4} ).

All right, let's try B. Okay, B, let me find a point on B. Looks like this is a point on B that is the point (4, 5). And so in this situation, k would be our y, which is 5, divided by our x, which is 4. So it looks like B is our choice. For kicks, you could also look at the constant of proportionality right over here.

Now there is one interesting example that I just want to touch on before we finish these examples. What about a situation where y is equal to x? What is the constant of proportionality then, and what would it look like as a line? Pause this video and think about it.

Well, there's really nothing new here; you just might not really see the constant of proportionality when you see it expressed this way. But y is equal to x is the same thing as y is equal to 1 times x.

And so then it might jump out at you that the constant of proportionality is 1 in this scenario right over here. Or if you took y divided by x, or if you took ( \frac{y}{x} ), you divide both sides by x, you would be left with the constant of proportionality, which would be equal to 1.

And if you wanted to graph it, well, it would just look like this: y would be equal to x for all x's. So that's what, when your constant of proportionality is 1, those would represent points on this orange line that I just constructed.

More Articles

View All
What To Focus On To Make $1 Million Dollars in 90 days | Grant Cardone
If you had 90 days, 90 days to make a million dollars, start with nothing. You started with nothing, and you can’t use your name, Kevin O’Leary. What would you focus on? Wow, well, that’s a tough one, Grant. Like, that’s a real tough one. Does it make se…
Meta VS Apple: What Their Battle Means For AI Startups
I think Apple doesn’t want the mobile battle to end. Yeah, I think Apple wants AI to perhaps be the reason why we have another 10-year phone upgrade cycle, and as long as the mobile battle is going, Apple’s got an advantage. All right, welcome to Dalton …
24 Hours of Sun at the South Pole | Continent 7: Antarctica
The sunlight down there is incredible because you get to see animals go about sort of what they do in perpetual sunlight. In 24 hours, generally, if you have nighttime, if we’ve got an instrument on an animal, or it gets dark out, you can’t work. For me,…
10 Things I Wish I Knew Before Investing
Hey guys, welcome back to the channel. In this video, I’m going to be going through 10 things I wish I knew before I started investing, so hopefully we can get through these 10 in around about 10 minutes. So, time is on, let’s get stuck into it. The firs…
Kevin O'Leary's Exclusive Abu Dhabi Investment Talk | Virgin Radio Dubai Interview
[Music] Kevin: Oir, welcome back to Virgin Radio Dubai on the Maz Hakeim podcast! Maz: I feel like I live here. Kevin: Well, I feel like you live here as well. It’s so nice to have you back. Last time we spoke, you were in Abu Dhabi. You were doing a h…
8 Hiking Essentials You Shouldn’t Leave Home Without | National Geographic
Action! Fellow adventurers, thrill seekers, and aficionados of the great outdoors, lend me your ears. I’m Starlight Williams, digital editor at National Geographic, amateur peak seeker along the northeast coast, and budding glamper. From trusty hiking pol…