yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Higgs Field, explained - Don Lincoln


3m read
·Nov 8, 2024

Without a doubt, the most exciting scientific observation of 2012 was the discovery of a new particle at the CERN laboratory that could be the Higgs boson, a particle named after physicist Peter Higgs.

The Higgs Field is thought to give mass to fundamental, subatomic particles like the quarks and leptons that make up ordinary matter. The Higgs bosons are wiggles in the field, like the bump you see when you twitch a rope. But how does this field give mass to particles? If this sounds confusing to you, you're not alone.

In 1993, the British Science Minister challenged physicists to invent a simple way to understand all this Higgs stuff. The prize was a bottle of quality champagne. The winning explanation went something like this: Suppose there's a large cocktail party at the CERN laboratory filled with particle physics researchers. This crowd of physicists represents the Higgs field.

If a tax collector entered the party, nobody would want to talk to them, and they could very easily cross the room to get to the bar. The tax collector wouldn't interact with the crowd in much the same way that some particles don't interact with the Higgs field. The particles that don't interact, like photons for example, are called massless.

Now, suppose that Peter Higgs entered the same room, perhaps in search of a pint. In this case, the physicists will immediately crowd around Higgs to discuss with him their efforts to measure the properties of his namesake boson. Because he interacts strongly with the crowd, Higgs will move slowly across the room.

Continuing our analogy, Higgs has become a massive particle through his interactions with the field. So, if that's the Higgs field, how does the Higgs boson fit into all of this? Let's pretend our crowd of partygoers is uniformly spread across the room.

Now suppose someone pops their head in the door to report a rumor of a discovery at some distant, rival laboratory. People near the door will hear the rumor, but people far away won't, so they'll move closer to the door to ask. This will create a clump in the crowd.

As people have heard the rumor, they will return to their original positions to discuss its implications, but people further away will then ask what's going on. The result will be a clump in the crowd that moves across the room. This clump is analogous to the Higgs boson.

It is important to remember that it is not that massive particles interact more with the Higgs field. In our analogy of the party, all particles are equal until they enter the room. Both Peter Higgs and the tax collector have zero mass.

It is the interaction with the crowd that causes them to gain mass. I'll say that again. Mass comes from interactions with a field. So, let's recap. A particle gets more or less mass depending on how it interacts with a field, just like different people will move through the crowd at different speeds depending on their popularity.

And the Higgs boson is just a clump in the field, like a rumor crossing the room. Of course, this analogy is just that -- an analogy, but it's the best analogy anyone has come up with so far.

So, that's it. That's what the Higgs Field and the Higgs boson is all about. Continuing research will tell us if we found it, and the reward will probably be more than just a bottle of champagne.

More Articles

View All
Why I Sold My Stocks
What’s up grandma’s guys? Here, so as some of you know, I’ve been investing a large portion of my income into the stock market this year and I’ve been really fortunate that most of them have done well. But I also realized that there is a time and a place …
Manipulating expressions using structure | Mathematics I | High School Math | Khan Academy
So we’re told that suppose a plus b is equal to zero. Which of these expressions equal a * b? And like always, pause the video and see if you can figure it out. These are actually pretty fun problems! All right, so let’s see if we can do a little bit of …
Example of derivative as limit of average rate of change
Stacy wants to find the derivative of f of x = x² + 1 at the point x = 2. Her table below shows the average rate of change of f over the intervals from x to 2 or from 2 to x, and these are closed intervals for x values. They get increasingly closer to two…
Wading for Change | Short Film Showcase | National Geographic
Foreign [Music] There’s a power in belief my family always used to say. Responder, believing is power. So when I would see magazines of, you know, white fly fishermen in Yellowstone, I did believe that it would be me one day. Leaving home for me has been …
Why I have an airplane fuselage in my showroom window!
This is a Airbus 319, Airbus 320 actual cross-section of the aircraft. I didn’t really build this thing in here and put it in the front window really to sell air buses or Boeings. The real reason was a marketing gimmick to catch the people’s eyes in the w…
Khan Stories: Anjali
My name is Anjali. My father is a car mechanic, and my mother is a housewife. Vishal, the background which these students come from is very challenging. So the need for a center was to provide an environment which was conducive to academics. I used to f…