yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Higgs Field, explained - Don Lincoln


3m read
·Nov 8, 2024

Without a doubt, the most exciting scientific observation of 2012 was the discovery of a new particle at the CERN laboratory that could be the Higgs boson, a particle named after physicist Peter Higgs.

The Higgs Field is thought to give mass to fundamental, subatomic particles like the quarks and leptons that make up ordinary matter. The Higgs bosons are wiggles in the field, like the bump you see when you twitch a rope. But how does this field give mass to particles? If this sounds confusing to you, you're not alone.

In 1993, the British Science Minister challenged physicists to invent a simple way to understand all this Higgs stuff. The prize was a bottle of quality champagne. The winning explanation went something like this: Suppose there's a large cocktail party at the CERN laboratory filled with particle physics researchers. This crowd of physicists represents the Higgs field.

If a tax collector entered the party, nobody would want to talk to them, and they could very easily cross the room to get to the bar. The tax collector wouldn't interact with the crowd in much the same way that some particles don't interact with the Higgs field. The particles that don't interact, like photons for example, are called massless.

Now, suppose that Peter Higgs entered the same room, perhaps in search of a pint. In this case, the physicists will immediately crowd around Higgs to discuss with him their efforts to measure the properties of his namesake boson. Because he interacts strongly with the crowd, Higgs will move slowly across the room.

Continuing our analogy, Higgs has become a massive particle through his interactions with the field. So, if that's the Higgs field, how does the Higgs boson fit into all of this? Let's pretend our crowd of partygoers is uniformly spread across the room.

Now suppose someone pops their head in the door to report a rumor of a discovery at some distant, rival laboratory. People near the door will hear the rumor, but people far away won't, so they'll move closer to the door to ask. This will create a clump in the crowd.

As people have heard the rumor, they will return to their original positions to discuss its implications, but people further away will then ask what's going on. The result will be a clump in the crowd that moves across the room. This clump is analogous to the Higgs boson.

It is important to remember that it is not that massive particles interact more with the Higgs field. In our analogy of the party, all particles are equal until they enter the room. Both Peter Higgs and the tax collector have zero mass.

It is the interaction with the crowd that causes them to gain mass. I'll say that again. Mass comes from interactions with a field. So, let's recap. A particle gets more or less mass depending on how it interacts with a field, just like different people will move through the crowd at different speeds depending on their popularity.

And the Higgs boson is just a clump in the field, like a rumor crossing the room. Of course, this analogy is just that -- an analogy, but it's the best analogy anyone has come up with so far.

So, that's it. That's what the Higgs Field and the Higgs boson is all about. Continuing research will tell us if we found it, and the reward will probably be more than just a bottle of champagne.

More Articles

View All
Colonial Weaponry | Saints & Strangers
[Music] Radio weapons, push off, push off design. Mr. Bradford, fire! This is your standard, uh, standard matchlock musket. It was the earliest firing, uh, musket that there was. This over here is a match cord; both sides were normally kept lit in case …
Life Below the Ocean Surface | StarTalk
So you know that’s a fish. Oh, that’s cool. He’s cute, or she. You can’t even tell. But what is that fish thinking? Is it like— is it nostalgia? Is it rage? Maybe I’m just projecting. But you can’t really tell what it’s thinking. It’s a mystery. It’s an e…
Example plotting corners of rectangle
The four corners of a rectangle are located at the points (11, 7), (11, 0), (2, 0), and (2, 7). Plot the four corners of the rectangle on the coordinate plane below, and they have these dots, and we can actually move these around for the four corners of o…
Understanding Investor Terms & Incentives || Rookie Mistakes with Dalton Caldwell and Michael Seibel
It’s almost as if they get to run this game every day with multiple companies and all you’re trying to do is raise money and get back to work. Hey, this is Michael Seibel with Dalton Caldwell and welcome to Rookie Mistakes. We’ve asked YC founders for th…
This morning routine is scientifically proven to make you limitless.
What if I told you that you could transform your life and unlock almost limitless potential, and it only takes about 15 minutes a day? In this video, I’m going to talk about something I’ve been looking for almost all my life: the Holy Grail of morning rou…
This Spider Wears Its Victims Like a Hat | National Geographic
This massive ant colony maintains cohesion through constant chemical communication. This signaling method facilitates the collection of food, defense of the colony, and, very creepily, collection of their dead. However, chemical signatures can be minute. …