yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Higgs Field, explained - Don Lincoln


3m read
·Nov 8, 2024

Without a doubt, the most exciting scientific observation of 2012 was the discovery of a new particle at the CERN laboratory that could be the Higgs boson, a particle named after physicist Peter Higgs.

The Higgs Field is thought to give mass to fundamental, subatomic particles like the quarks and leptons that make up ordinary matter. The Higgs bosons are wiggles in the field, like the bump you see when you twitch a rope. But how does this field give mass to particles? If this sounds confusing to you, you're not alone.

In 1993, the British Science Minister challenged physicists to invent a simple way to understand all this Higgs stuff. The prize was a bottle of quality champagne. The winning explanation went something like this: Suppose there's a large cocktail party at the CERN laboratory filled with particle physics researchers. This crowd of physicists represents the Higgs field.

If a tax collector entered the party, nobody would want to talk to them, and they could very easily cross the room to get to the bar. The tax collector wouldn't interact with the crowd in much the same way that some particles don't interact with the Higgs field. The particles that don't interact, like photons for example, are called massless.

Now, suppose that Peter Higgs entered the same room, perhaps in search of a pint. In this case, the physicists will immediately crowd around Higgs to discuss with him their efforts to measure the properties of his namesake boson. Because he interacts strongly with the crowd, Higgs will move slowly across the room.

Continuing our analogy, Higgs has become a massive particle through his interactions with the field. So, if that's the Higgs field, how does the Higgs boson fit into all of this? Let's pretend our crowd of partygoers is uniformly spread across the room.

Now suppose someone pops their head in the door to report a rumor of a discovery at some distant, rival laboratory. People near the door will hear the rumor, but people far away won't, so they'll move closer to the door to ask. This will create a clump in the crowd.

As people have heard the rumor, they will return to their original positions to discuss its implications, but people further away will then ask what's going on. The result will be a clump in the crowd that moves across the room. This clump is analogous to the Higgs boson.

It is important to remember that it is not that massive particles interact more with the Higgs field. In our analogy of the party, all particles are equal until they enter the room. Both Peter Higgs and the tax collector have zero mass.

It is the interaction with the crowd that causes them to gain mass. I'll say that again. Mass comes from interactions with a field. So, let's recap. A particle gets more or less mass depending on how it interacts with a field, just like different people will move through the crowd at different speeds depending on their popularity.

And the Higgs boson is just a clump in the field, like a rumor crossing the room. Of course, this analogy is just that -- an analogy, but it's the best analogy anyone has come up with so far.

So, that's it. That's what the Higgs Field and the Higgs boson is all about. Continuing research will tell us if we found it, and the reward will probably be more than just a bottle of champagne.

More Articles

View All
How Does A Sailboat Actually Work?
[Applause] So my question to you is, uh, uh, let’s say the wind is coming from over there. I want you to position the boat in whatever direction you think will make it go the fastest. How would you set it up? You can set the sail how you want, something l…
Dominoes - HARDCORE Mode - Smarter Every Day 182
Okay, let’s just get this out there right now. I know this is weird. You probably watch this channel because you want to see slow motion phenomenon of like bullets hitting stuff, and fracture mechanics, and water drops bouncing, and animals squirting thin…
Testing a Shark Deterrent | Shark Beach with Chris Hemsworth
I think it’s fair to say, however good we get at keeping humans and sharks apart in the ocean, there will always be moments when we meet. In those worst-case scenarios when sharks bite, is there anything that can be done? Charlie Houveneers is a scientis…
How Cicadas Become Flying Saltshakers of Death | Podcast | Overheard at National Geographic
What you’re hearing right now is a love song. Okay, you’re right, there’s cicadas—actually, male cicadas to be exact. But stay with me, because this isn’t an episode just about a really loud swarm of bugs. It’s actually a crazy tale about an ancient under…
Empty Space is NOT Empty
One of the most amazing things about atoms is that they’re mainly empty space. If an atom were as wide as your arm span, then the electrons would all be whizzing about inside the volume enclosed by your fingertips. Meanwhile, the nucleus would be sitting …
Fat Tuna Hooks Up | Wicked Tuna | National Geographic
I want to move that one to that rod holder there too. Might as well just have it there. Well, we’re down here in Chatham. We’ve got a bunch of boats with us. We have T.J. from Hot Tuna. We got Jack on Time Flies and Paul on Wicked Pissah. So there’s a bu…