yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Higgs Field, explained - Don Lincoln


3m read
·Nov 8, 2024

Without a doubt, the most exciting scientific observation of 2012 was the discovery of a new particle at the CERN laboratory that could be the Higgs boson, a particle named after physicist Peter Higgs.

The Higgs Field is thought to give mass to fundamental, subatomic particles like the quarks and leptons that make up ordinary matter. The Higgs bosons are wiggles in the field, like the bump you see when you twitch a rope. But how does this field give mass to particles? If this sounds confusing to you, you're not alone.

In 1993, the British Science Minister challenged physicists to invent a simple way to understand all this Higgs stuff. The prize was a bottle of quality champagne. The winning explanation went something like this: Suppose there's a large cocktail party at the CERN laboratory filled with particle physics researchers. This crowd of physicists represents the Higgs field.

If a tax collector entered the party, nobody would want to talk to them, and they could very easily cross the room to get to the bar. The tax collector wouldn't interact with the crowd in much the same way that some particles don't interact with the Higgs field. The particles that don't interact, like photons for example, are called massless.

Now, suppose that Peter Higgs entered the same room, perhaps in search of a pint. In this case, the physicists will immediately crowd around Higgs to discuss with him their efforts to measure the properties of his namesake boson. Because he interacts strongly with the crowd, Higgs will move slowly across the room.

Continuing our analogy, Higgs has become a massive particle through his interactions with the field. So, if that's the Higgs field, how does the Higgs boson fit into all of this? Let's pretend our crowd of partygoers is uniformly spread across the room.

Now suppose someone pops their head in the door to report a rumor of a discovery at some distant, rival laboratory. People near the door will hear the rumor, but people far away won't, so they'll move closer to the door to ask. This will create a clump in the crowd.

As people have heard the rumor, they will return to their original positions to discuss its implications, but people further away will then ask what's going on. The result will be a clump in the crowd that moves across the room. This clump is analogous to the Higgs boson.

It is important to remember that it is not that massive particles interact more with the Higgs field. In our analogy of the party, all particles are equal until they enter the room. Both Peter Higgs and the tax collector have zero mass.

It is the interaction with the crowd that causes them to gain mass. I'll say that again. Mass comes from interactions with a field. So, let's recap. A particle gets more or less mass depending on how it interacts with a field, just like different people will move through the crowd at different speeds depending on their popularity.

And the Higgs boson is just a clump in the field, like a rumor crossing the room. Of course, this analogy is just that -- an analogy, but it's the best analogy anyone has come up with so far.

So, that's it. That's what the Higgs Field and the Higgs boson is all about. Continuing research will tell us if we found it, and the reward will probably be more than just a bottle of champagne.

More Articles

View All
Your Mass is NOT From the Higgs Boson
Twenty-one grams. That is the mass of all of the electrons in your body if, like me, you weigh about 70 kilograms. Now, all of the mass comes from the Higgs mechanism, which means that as your electrons are traveling through space time, they interact with…
Emergence – How Stupid Things Become Smart Together
An ant is pretty stupid. It doesn’t have much of a brain, no will, no plan, and yet, many ants together are smart. An ant colony can construct complex structures. Some colonies keep farms of fungi; others take care of cattle. They can wage war or defend t…
TATTOOING Close Up (in Slow Motion) - Smarter Every Day 122
Hey, it’s me, Destin. Welcome back to Smarter Every Day. Not really sure how this is gonna work out, but I want to know a little bit more about tattoos. So I’m just walking up to a tattoo parlour and seeing if they will let me video a tattoo being applied…
Would I run for President?
And you said you’re not running for president. I wonder, there’s not much time left. You should maybe consider running for president. And why not do it? Why not? Why? What’s the argument to be so successful, so rich, so intellectually curious, and not do …
Creating objective summaries | Reading | Khan Academy
Hello readers. Today I want to talk about objective summaries by way of introducing you to the character of Joe Friday, a fictional cop from an old radio show from the 50s called Dragnet. The show had this iconic theme, and it went like this: Friday was a…
15 Ways to Train Your Brain Like a Genius
Your brain is the most powerful weapon you can train to use. If you fine-tune it to your advantage, you can unlock its true potential and there’s really not much to it. It’s been said that the brain stops developing at 25, but that’s not entirely true. Yo…