yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Higgs Field, explained - Don Lincoln


3m read
·Nov 8, 2024

Without a doubt, the most exciting scientific observation of 2012 was the discovery of a new particle at the CERN laboratory that could be the Higgs boson, a particle named after physicist Peter Higgs.

The Higgs Field is thought to give mass to fundamental, subatomic particles like the quarks and leptons that make up ordinary matter. The Higgs bosons are wiggles in the field, like the bump you see when you twitch a rope. But how does this field give mass to particles? If this sounds confusing to you, you're not alone.

In 1993, the British Science Minister challenged physicists to invent a simple way to understand all this Higgs stuff. The prize was a bottle of quality champagne. The winning explanation went something like this: Suppose there's a large cocktail party at the CERN laboratory filled with particle physics researchers. This crowd of physicists represents the Higgs field.

If a tax collector entered the party, nobody would want to talk to them, and they could very easily cross the room to get to the bar. The tax collector wouldn't interact with the crowd in much the same way that some particles don't interact with the Higgs field. The particles that don't interact, like photons for example, are called massless.

Now, suppose that Peter Higgs entered the same room, perhaps in search of a pint. In this case, the physicists will immediately crowd around Higgs to discuss with him their efforts to measure the properties of his namesake boson. Because he interacts strongly with the crowd, Higgs will move slowly across the room.

Continuing our analogy, Higgs has become a massive particle through his interactions with the field. So, if that's the Higgs field, how does the Higgs boson fit into all of this? Let's pretend our crowd of partygoers is uniformly spread across the room.

Now suppose someone pops their head in the door to report a rumor of a discovery at some distant, rival laboratory. People near the door will hear the rumor, but people far away won't, so they'll move closer to the door to ask. This will create a clump in the crowd.

As people have heard the rumor, they will return to their original positions to discuss its implications, but people further away will then ask what's going on. The result will be a clump in the crowd that moves across the room. This clump is analogous to the Higgs boson.

It is important to remember that it is not that massive particles interact more with the Higgs field. In our analogy of the party, all particles are equal until they enter the room. Both Peter Higgs and the tax collector have zero mass.

It is the interaction with the crowd that causes them to gain mass. I'll say that again. Mass comes from interactions with a field. So, let's recap. A particle gets more or less mass depending on how it interacts with a field, just like different people will move through the crowd at different speeds depending on their popularity.

And the Higgs boson is just a clump in the field, like a rumor crossing the room. Of course, this analogy is just that -- an analogy, but it's the best analogy anyone has come up with so far.

So, that's it. That's what the Higgs Field and the Higgs boson is all about. Continuing research will tell us if we found it, and the reward will probably be more than just a bottle of champagne.

More Articles

View All
The Moment kurzgesagt Changed Forever
Hey you, so nice of you to join us! We want to tell you about something that changed kurzgesagt forever. Kurzgesagt started out as a small-scale passion project. But creating animated science videos that are free for everyone doesn’t pay the bills – DAMN …
PDSInvitation
Hi, Kevin Oerry here, businessman, investor, entrepreneur. You probably know me from ABC Shark Tank. I want to personally invite you to join me in Orlando for an exciting pharmacy industry event unlike any other that I’ll be speaking at in February: the 2…
Dog BUTT Floss! And More: LÜT #21
A wallet that looks like a matchbook and edible spray paint. It’s episode 21 of LÜT. The mince that come in this spam tin actually taste like cinnamon, but this lip balm tastes like Lucky Charms. Question. What’s warmer than a sweater and a mug of hot ch…
Formula for first term in Fourier Series
Several videos ago, we introduced the idea of a Fourier series. I could take a periodic function, we started with the example of this square wave, and I could represent it as the sum of weighted sine and cosine functions. Then we took a little bit of an i…
Ask Sal Anything! Homeroom - Tuesday, September 22
Hi everyone! Sal here. I was enjoying the view outside when you caught me. Uh, welcome to today’s homeroom live stream! Uh, today we’re going to have just an “ask me anything.” So, uh, if you already have some questions, feel free to put them into the me…
Pronoun number | The parts of speech | Grammar | Khan Academy
So here’s something weird and cool about English and languages in general: they have a sense of number kind of encoded into them. We call this grammatical number. The way this plays out is in the difference between singular and plural in English; the idea…