yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Midpoint sums | Accumulation and Riemann sums | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we want to do in this video is get an understanding of how we can approximate the area under a curve. For the sake of an example, we'll use the curve ( y = x^2 + 1 ).

Let's think about the area under this curve above the x-axis from ( x = -1 ) to ( x = 2 ). So that would be this area right over here. There are many ways that I could tackle this, but what I'm going to do is break up this interval into three equal sections that are really the bases of rectangles. We're going to think about the different ways to define the heights of those rectangles.

So once again, I'm going to approximate using three rectangles of equal width, and then we'll think about the different ways that we can define the heights of the rectangles. Let's first define the height of each rectangle by the value of the function at the midpoint. We see that right over here.

Let's just make sure that it actually makes sense to us. If we look at our first rectangle, right over here, let's just first appreciate that we have split up the interval from ( x = -1 ) to ( x = 2 ) into three equal sections. Each of them has a width of 1. If we wanted a better approximation, we could do more sections or more rectangles.

Now, let's see how we would compute this. The width of each of these is 1. The height is based on the value of the function at the midpoint. The midpoint here is ( -\frac{1}{2} ). The midpoint here is ( \frac{1}{2} ), and the midpoint here is ( \frac{3}{2} ).

So this height is going to be ( -\frac{1}{2}^2 + 1 ). ( -\frac{1}{2}^2 ) is ( \frac{1}{4} ) plus 1, so that's ( \frac{5}{4} ). Therefore, the height here is ( \frac{5}{4} ).

So, you take ( \frac{5}{4} ) times 1; this area is ( \frac{5}{4} ). Let me write that down. So if we're doing the midpoint to define the height of each rectangle, this first one has an area of ( \frac{5}{4} ).

Let me do that in a color you can see: ( \frac{5}{4} ). The second one, same idea, ( \frac{1}{2}^2 + 1 ) is ( \frac{5}{4} ) times the width of 1, so ( \frac{5}{4} ) there.

So let me add that: ( + \frac{5}{4} ). The third rectangle—what's its height? Well, we're going to take the height at the midpoint. ( \frac{3}{2}^2 ) is ( \frac{9}{4} ) plus 1, which is the same thing as ( \frac{13}{4} ).

So it has a height of ( \frac{13}{4} ) and then a width of 1, so times 1, which would just give us ( \frac{13}{4} ). So ( + \frac{13}{4} ) would give us ( \frac{23}{4} ), which is the same thing as ( 5\frac{3}{4} ).

This is often known as a midpoint approximation, where we're using the midpoint of each interval to define the height of our rectangle. But this isn't the only way to do it; we could look at the left endpoint or the right endpoint. We'll do that in other videos.

If we want to do it just for kicks, let's just do that really fast. So if we want to look at the left endpoint of our interval, well here, our left endpoint is ( -1 ). ( -1^2 + 1 ) is 2. ( 2 ) times ( 1 ) gives us ( 2 ). Then here, the left part of this interval is ( x = 0 ).

( 0^2 + 1 ) is 1. ( 1 ) times ( 1 ) is 1. Now here, our left endpoint is ( 1 ). ( 1^2 + 1 ) is equal to ( 2 ) times ( 1 ). Our base is equal to ( 2 ).

So here we have a situation where we take our left endpoints, where it is equal to ( 2 + 1 + 2 ) or ( 5 ). But we could also look at the right endpoints of our intervals.

So this first rectangle here is clearly under-approximating the area over this first interval. Its right endpoint is ( 0 ). ( 0^2 + 1 ) is ( 1 ), so height of ( 1 ), width of ( 1 ) gives an area of ( 1 ).

The second rectangle here has a height that we get from looking at our right endpoint. ( 1^2 + 1 ) is ( 2 ) times our width of ( 1 ); well, that's going to give us ( 2 ).

Then here, our right endpoint is ( 2^2 + 1 ) is ( 5 ) times our width of ( 1 ) gives us ( 5 ). So in this case, when we look at our right endpoints of our intervals, we get ( 1 + 2 + 5 = 8 ).

Eyeballing this, it looks like we're definitely overcounting more than undercounting, so this looks like an over-approximation. The whole idea here is just to appreciate how we can compute these approximations using rectangles.

As you can imagine, if we added more rectangles that had skinnier and skinnier bases, but still covered the interval from ( x = -1 ) to ( x = 2 ), we would get better and better approximations of the true area.

More Articles

View All
Example using estimation for decimal products
We are told that 52 times 762 is equal to 39,624, and then we’re told to match each expression to its product. These products, this is the exercise on Khan Academy. You can move them around so the product can be matched to the appropriate expression. So p…
Approximating multi digit division
What we want to do in this video is get some practice estimating multi-digit division problems. So here we’re asked to estimate 794 divided by 18. Now, if you wanted to get the exact answer, you’d probably have to do—in fact, you would have to do—some lon…
Explore the Hidden and Fragile World Inside Caves | Short Film Showcase
Oh [Music] my name is Nancy Ellen Bach. I am a second-generation caterer. I’ve been caving my entire life. I feel more at home underground than I do anywhere else. This is where I belong and I am a sustaining contributor of the Southeastern Cave Conservan…
Fish or Shark? | Wicked Tuna | National Geographic
Oh, we made it down to Chatham. Oh, I hope we get a bite. Staying positive. You see, the whales, the tuna are generally with them. We started to hear them. We set up, basically down sea of them. Tons of bait here that they’re feeding on. Hopefully, the tu…
15 Ways to Hack Your Brain to Break Bad Habits
How many times have you tried to break a bad habit? 90% of people fail when they first start trying to break their bad habits, and it’s because they’re trying to break it in all the wrong ways. Habits are hardwired into your brain, and they have to be bec…
The Fastest Way To Find Waldo
Here’s how to become scary good at finding Waldo. In 2015, data scientist Randall Olssen used all 68 of Waldo’s hiding spots in the seven primary books to build this kernel density estimate. So where’s Waldo really? He’s here! Now, there are more ways t…