yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (implicit equations): evaluate derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we have a question here from the 2015 AP Calculus AB test, and it says, "Consider the curve given by the equation ( y^3 - xy = 2 )." It can be shown that the first derivative of ( y ) with respect to ( x ) is equal to that. So they solved that for us.

Then part C of it, I skipped parts A and B for the sake of this video: Evaluate the second derivative of ( y ) with respect to ( x ) at the point on the curve where ( x = -1 ) and ( y = 1 ).

So pause this video and see if you can do that.

All right, now let's do it together. And so let me just first write down the first derivative. So ( \frac{dy}{dx} = \frac{y}{3y^2 - x} ).

Well, if we're concerning ourselves with the second derivative, then we want to take the derivative with respect to ( x ) of both sides of this. So let's just do that. Do the derivative operator on both sides right over here.

Now, on the left-hand side, we of course are going to get the second derivative of ( y ) with respect to ( x ). But what do we get on the right-hand side? There are multiple ways to approach this, but for something like this, the quotient rule probably is the best way to tackle it.

I sometimes complain about the quotient rule, saying, "Hey, it’s just a variation of the product rule," but it's actually quite useful in something like this. We just have to remind ourselves that this is going to be equal to the derivative of the numerator with respect to ( x ), and so that's just going to be ( \frac{dy}{dx} ) times the denominator ( (3y^2 - x) ) minus the numerator ( (y) ) times the derivative of the denominator with respect to ( x ).

Well, what's the derivative of this denominator with respect to ( x )? The derivative of ( 3y^2 ) with respect to ( x ) is going to be the derivative of ( 3y^2 ) with respect to ( y ), which is just going to be ( 6y ) (I’m just using the power rule there) times the derivative of ( y ) with respect to ( x ). All I did just now is take the derivative of that with respect to ( x ), which is the derivative of that with respect to ( y \times \frac{dy}{dx} ) come straight out of the chain rule minus the derivative of this with respect to ( x ), which is just going to be equal to ( 1 ).

All of that over—remember we’re in the middle of the quotient rule right over here—all of that over the denominator squared. All of that over ( (3y^2 - x)^2 ).

Now lucky for us, they want us to evaluate this at a point, as opposed to having to do a bunch of algebraic simplification here. So we can say when—let me do it over here—so when ( x = -1 ) and ( y = 1 ).

Well, first of all, what's ( \frac{dy}{dx} ) going to be? The derivative of ( y ) with respect to ( x )—let me scroll down a little bit so we have a little bit more space—is going to be equal to ( \frac{1}{3 \cdot 1^2} ) which is just ( 3 - (-1) ).

So that’s just going to be plus 1; it's going to be equal to ( \frac{1}{4} ).

And so this whole expression over here, so I can write the second derivative of ( y ) with respect to ( x ) is going to be equal to—well we know that—that's going to be equal to (\frac{1}{4} \cdot 3 \cdot 1^2) which is just ( 3 - (-1) ) so plus 1 minus 1.

So I’ll just leave that minus out there, times ( 6 \cdot 1 \cdot \frac{1}{4} ). Let me just write it out: ( 6 \cdot 1 \cdot \frac{1}{4} ) minus 1.

All of that over—let's see—this is going to be ( 3 \cdot y^2 ) where ( y = 1 ). So this is going to be ( 3 \cdot (3 - (-1)) ) so plus 1 squared.

Now, what is this going to be? This is just simplifying something here: ( \frac{1}{4} \cdot 4 ), that's going to simplify to 1. And let’s see, this is going to be one and a half minus 1, so that's going to be ( \frac{1}{2} ) and then we're going to have all of that over 16.

And so this is going to be equal to—well, get a mini drum roll here—this is going to be equal to ( 1 - \frac{1}{2} ) which is equal to ( \frac{1}{2} ) over 16, which is the same thing as ( \frac{1}{32} ).

And we are done.

More Articles

View All
Valence electrons and ionic compounds | AP Chemistry | Khan Academy
In this video, we’re going to get even more appreciation for why the periodic table of elements is so useful. In particular, we’re going to focus on groups of the periodic table of elements. When we talk about a group, we’re just talking about a column. A…
Warren Buffett Just Sold One Of His Biggest Stocks.
Well, it’s that time of year again. The 13F filings are out, which means we get to peek inside the portfolios of the world’s best investors. If we look to the biggest, best investor of them all, Mr. Warren Buffett, there was some very intriguing activity …
Limits at infinity of quotients with square roots (even power) | AP Calculus AB | Khan Academy
Let’s see if we can find the limit as x approaches negative infinity of the square root of four x to the fourth minus x over two x squared plus three. And like always, pause this video and see if you can figure it out. Well, whenever we’re trying to find…
A Stoic Approach To Envy
Since many of you asked, I decided to deliver. As a sequel to my video about jealousy, let’s talk about envy. What is envy? How should we handle it? What can we learn from the Stoics in regards to envy? And is it really a bad thing? First of all, I want …
Dividing by a two digit number
In this video, we’re going to get a little bit of practice dividing by a two-digit number. So let’s say that we have 4781 divided by 32. Pause this video and see if you can figure out what that’s going to be and if there is a remainder, figure out what th…
Adjectives and commas | Adjectives | Khan Academy
Hey Garans, hey Paige, hi David. Hey, so Paige, I went to the grocery store yesterday and I got this apple. Okay? I put it in the fridge, uh, and this morning when I opened the fridge, the apple was all like gross and sticky and mushy. I really want to w…