yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to proportional relationships | 7th grade | Khan Academy


3m read
·Nov 11, 2024

In this video, we are going to talk about proportional relationships, and these are relationships between two variables where the ratio between the variables is equivalent. Now, if that sounds complex or a little bit fancy, it'll hopefully seem a little bit more straightforward once we look at some examples.

So, let's say I'm looking at a recipe for some type of baked goods. Maybe it's some type of pancakes. I've been making a lot of those lately. We know that for a certain number of eggs, how many cups of milk we need. So we have the number of eggs, and then we're also going to have cups of milk.

In this recipe, we know that if we're going to use one egg, then we would use two cups of milk. If we use three eggs, then we're going to use six cups of milk. If we use, let's say, 12 eggs, then we're going to use 24 cups of milk.

So, is this a proportional relationship where the two variables are the cups of milk and the number of eggs? Well, to test that, we just have to think about the ratio between these two variables. You could say the ratio of the number of eggs to cups of milk or the ratio of the cups of milk to the number of eggs, but just to ensure that they are always equivalent in these scenarios.

Let me make another column here, and I'm going to think about the ratio of the eggs to the cups of milk. Well, in this first scenario, one egg for two cups of milk. The second scenario is three to six. This third scenario is 12 to 24. Are these equivalent ratios?

Well, to go from 1 to 3, you multiply by 3, and we also, to go from 2 to 6, you multiplied by 3. So, you multiplied both the variables by 3. Similarly, if you multiply the number of eggs by 4, then you multiply the number of cups of milk by 4 as well. So, these indeed are all equivalent ratios: 1 to 2, 3 to 6, 12 to 24. In every scenario, you have twice as much cups of milk as you have number of eggs. So, this would be proportional.

Now, check: what would be an example of a non-proportional relationship? Let's stay in this baked goods frame of mind. Let's say you're going to a cake store, and you're curious about how much it would cost to buy cake for different numbers of people. So, let's say numbers of servings in one column and then the cost of the cake. Let me set up two columns right over here.

So, let's say if you have 10 servings, the cake costs 20. If you have 20 servings, the cake costs 30 dollars, and if you have 40 servings, the cake costs 40 dollars. Pause this video and see if you can figure out whether this is a proportional relationship. If it is, why? If it isn't, why not?

All right, well, let's just think about the ratios again. So, in here, our two variables are the number of servings and the cost of cake. So, if we look at the ratio of the servings to cost, in this first situation it is 10 to 20, and then it is 20 to 30, and then it is 40 to 40.

To see if these are equivalent ratios, when we go from 10 to 20 on the number of servings, we're multiplying by two, but when we go from 20 to 30 on the cost of the cake, we aren't multiplying by two; we're multiplying by 1.5 or one and a half. Similarly, when we go from 20 to 40, we are multiplying by two again, but to go from 30 to 40, we aren't multiplying by two; we're multiplying by one and one-third.

When we multiply our servings by a given amount, we're not multiplying our cost of cake by the same amount. This tells us that this is not proportional. One way to think about proportional relationships, we already said that the ratio between the variables will be equivalent. Another way to think about it is that one variable will always be some constant times the first variable.

So, in our first example right over here, we said the cups of milk is always two times the number of eggs. We can write that down. So, cups of milk is always going to be equal to two times the number of eggs. This number right over here, we call that the constant of proportionality. You wouldn't be able to set up an equation like this in this scenario; it would have to be more complicated.

In a proportional relationship, the ratios are equivalent between the two variables, and you can set it up with an equation like this where you have a constant of proportionality.

More Articles

View All
Unreplaceable Skills: AI's Limits
Yesterday we talked about 10 skills that are now almost useless thanks to the rise of AI. Now, it’s only natural to talk about what particular skills an AI could never replace. These are the skills that even the most advanced robot cannot replicate, and p…
Share your career story with Khan Academy for our new series
Hi, I’m Sal Khan, founder of the Khan Academy, and I’m here to invite you to participate in an exciting project that we have around career. Our mission statement as a not-for-profit is to provide a free, world-class education for anyone, anywhere, and par…
Solving quadratics by taking square roots examples | High School Math | Khan Academy
So pause the video and see if you can solve for x here. Figure out which x values will satisfy this equation. All right, let’s work through this, and the way I’m going to do this is I’m going to isolate the (x + 3) squared on one side. The best way to do …
What Will We Miss?
Hey, Vsauce. Michael here. And the year 6009 will be the very first year since 1961 that a year, when written in Hindu-Arabic numerals, can be inverted and still look the same. But you and I probably won’t live long enough to enjoy the year six thousand a…
Surviving a Pathet Lao Prison | No Man Left Behind
Unassisted, Vietnam cannot produce the military formations essential to it. News is just breaking: a United States plane has been shot down over [Music] La. When they caught me, I took everything [Music] away, but you’ve got something that they can’t get…
Ray Dalio and Elliot Choy on Why Money Shouldn't be an End Goal
Or do you ever see people around you that make the mistake of thinking that money is the actual goal? Then they maybe got into it aiming to achieve freedom or these other things, security. But then they are just so caught up in moving that goal post that …