yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflecting and scaling absolute value function


3m read
·Nov 11, 2024

  • [Instructor] The graph of y is equal to absolute value of x is reflected across the x-axis and then scaled vertically by a factor of seven. What is the equation of the new graph? So pause the video and see if you can figure that out. Alright, let's work through it together now.

Now, you might not need to draw it visually but I will just so that we can all together visualize what is going on. So let's say that's my x-axis and that is my y-axis. y equals the absolute value of x. So for non-negative values of x, y is going to be equal to x. Absolute value of zero is zero. Absolute value of one is one. Absolute value of two is two.

So it's gonna look like this. It's gonna have a slope of one and then for negative values, when you take the absolute value, you're gonna take the opposite. You're gonna get the positive. So it's gonna look like this. Let me see if I can draw that a little bit cleaner. This is a hand drawn sketch so bear with me but hopefully this is familiar. You've seen the graph of y is equal to absolute value of x before.

Now, let's think about the different transformations. So first, they say is reflected across the x-axis. So for example, if I have some x value right over here, before, I would take the absolute value of x and I would end up there but now we wanna reflect across the x-axis so we wanna essentially get the negative of that value associated with that corresponding x and so for example, this x, before, we would get the absolute value of x but now we wanna flip across the x-axis and we wanna get the negative of it.

So in general, what we are doing is we are getting the negative of the absolute value of x. In general, if you're flipping over the x-axis, you're getting the negative. You're scaling the expression or the function by a negative. So this is going to be y is equal to the negative of the absolute value of x. Once again, whatever absolute value of x was giving you before for given x, we now wanna get the negative of it.

We now wanna get the negative of it. So that's what reflecting across the x-axis does for us but then they say scaled vertically by a factor of seven and the way I view that is if you're scaling it vertically by a factor of seven, whatever y value you got for given x, you now wanna get seven times the y value, seven times the y value for a given x.

And so if you think about that algebraically, well, if I want seven times the y value, I'd have to multiply this thing by seven. So I would get y is equal to negative seven times the absolute value of x and that's essentially what they're asking, what is the equation of the new graph, and so that's what it would be.

The negative flips us over the x-axis and then the seven scales vertically by a factor of seven but just to understand what this would look like, well, you multiply zero times seven, it doesn't change anything but whatever x this is, this was equal to negative x but now we're gonna get to negative seven x.

So let's see, two, three, four, five, six, seven so it'd put it something around that. So our graph is now going to look, is now going to look like this. It's going to be stretched along the vertical axis. If we were scaling vertically by something that had an absolute value less than one then it would make the graph less tall.

It would make it look, it would make it look wider. Let me make it at least look a little bit more symmetric. So it's gonna look something, something like that but the key issue and the reason why I'm drawing is so you can see that it looks like it's being scaled vertically. It's being stretched in the vertical direction by a factor of seven and the way we do that algebraically is we multiply by seven and the negative here is what flipped us over the x-axis.

More Articles

View All
History of Tesla Ponzi Pops
Today we’ll go over the history of Tesla’s ponzi pops. These are those insane plus 100 moves within a month or two, which happened four times over 14 months. I’ll show you what I look for and also my positions as we head into earnings tomorrow. Like all …
Why You'll Regret Buying Stocks In 2023
What’s up, Graham? It’s guys here, and 2023 is already off to an interesting start. For example, a Florida woman was recently pulled from a storm drain for the third time in two years. The National Guard general was fired for ordering troops to take his m…
Analyzing mistakes when finding extrema (example 1) | AP Calculus AB | Khan Academy
Pamela was asked to find where ( h(x) = x^3 - 6x^2 + 12x ) has a relative extremum. This is her solution. So, step one, it looks like she tried to take the derivative. Step two, she tries to find the solution to find where the derivative is equal to zero…
Snowmobile Inspection | Life Below Zero
Go have a look at the undercarriage. I look for dead shocks, the Fela dead shocks. I want to feel some pressure and some compression. These are feeling good. One of our wear parts on a snow machine is a belt. You can burn them up, bust them, blow them; al…
Linkage institutions and political parties | US government and civics | Khan Academy
In many videos, we have talked about the makeup of government at either the federal or the state level. We’ve talked about branches of government; we’ve talked about checks and balances. What we’re going to talk about in this video is how people interface…
Experiments in Art and Technology with Artforum Editor Michelle Kuo
So I’ll just start by saying experiments in art and technology was a group that was founded in 1966 by the artist Robert Rauschenberg by an engineer named Billy Kluever, who was a research scientist at Bell Labs at that time. Literally, the heyday, or bas…