yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fraction multiplcation on the number line


2m read
·Nov 10, 2024

So we're going to think about, in this video, is multiplying fractions. So let's say that we wanted to take two-thirds, and we want to multiply it by four. What is this going to be equal to? Pause this video and try to think about it on your own.

All right, now let's work through this together. And to help us, I will use a number line. Let's say that each of these hash marks represent a third. So this is 0, this is one-third, two-thirds, three-thirds, four-thirds, five-thirds, six-thirds, seven-thirds, eight-thirds, and nine-thirds.

So where is two-thirds times one? Well, two-thirds times one is just going to be two-thirds. We just take a jump of two-thirds, so that is times one. If we multiply by two, or if we take two-thirds times two, that'll be two jumps. So one, two-thirds, two, two-thirds, three, two-thirds, and then four, two-thirds.

So we just took four jumps of two-thirds each. You could view that as two-thirds plus two-thirds plus two-thirds plus two-thirds. And where does that get us to? It got us to eight-thirds. So notice two-thirds times four is equal to eight-thirds.

Now we could go the other way. We could look at a number line and think about what are ways to represent what the number line is showing us. On Khan Academy, we have some example problems that do it that way, so I thought it would be good to do an example like that.

And so let's label this number line a little bit different. Instead of each of these lines representing a third, let's say they represent a half. So zero, one-half, two halves, three halves, four halves, five halves. What did I write? Five, six? My brain is going ahead: five halves, six halves, seven halves, eight halves, and nine halves.

And let's say we were to see something like this. So if you were to just see this representation—so I'm going to try to draw it like this—if you were to just see this representation, what is that trying to represent? What type of multiplication is that trying to represent?

Well, you could view that as three halves plus another three halves plus another three halves because notice each of these jumps are three one-halves or three halves. So you could view this as three halves plus three halves plus three halves, or another way of thinking about it is this is three jumps of three halves.

So you could also view this as being the same thing as three times three halves. And what are these equal to? Well, three halves plus three halves plus three halves, or three times three halves, it gets you to nine halves.

More Articles

View All
Voltage divider | Circuit analysis | Electrical engineering | Khan Academy
Now I’m going to show you a circuit that’s called a voltage divider. This is a name we give to a simple circuit of two series resistors. So I’m just going to draw two series resistors here, and it’s a nickname in the sense of it’s just a pattern that we s…
Why Happiness Is Like Water (animated)
Let’s talk a little bit about that crazy thing called happiness. It’s the state of mind that everyone is after. Furthermore, there’s a complete industry that revolves around attaining it. But happiness is not static. It’s not that you do X and Y, which le…
The Moment I knew I was going to be RICH | Jaspreet Singh
That’s what happens to people that really get blown up. They don’t follow any diversification rules, and they end up with one or two stocks representing 40, 50, 60 percent of their net worth. And when they correct, they get killed. In order to be success…
Homeroom with Sal & Melinda Gates - Tuesday, January 12
Hi everyone, Sal here from Khan Academy. Welcome to the Homeroom live stream! Actually, I think this is the first of the year. Hopefully, everyone had a good New Year’s considering the circumstances and is enjoying 2021. Given the circumstances, we have a…
Growing Greens (Deleted Scene) | Life Below Zero
[Music] [Music] Well, I’m about out of water for water in my greenhouse, so I got to pump some water up from the river to fill up my tank. I go through a lot of water on hot sunny days. If I have a hot week, I’ll go through almost two of these tanks in on…
Veritasium Bungee Jumps!
All right, I’m here at the Karu bridge in, uh, New Zealand, where the first person threw themselves off this bridge with nothing but an elastic band tied around their legs. So I’m going to give it a shot today and, uh, find out what it feels to accelerate…