yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fraction multiplcation on the number line


2m read
·Nov 10, 2024

So we're going to think about, in this video, is multiplying fractions. So let's say that we wanted to take two-thirds, and we want to multiply it by four. What is this going to be equal to? Pause this video and try to think about it on your own.

All right, now let's work through this together. And to help us, I will use a number line. Let's say that each of these hash marks represent a third. So this is 0, this is one-third, two-thirds, three-thirds, four-thirds, five-thirds, six-thirds, seven-thirds, eight-thirds, and nine-thirds.

So where is two-thirds times one? Well, two-thirds times one is just going to be two-thirds. We just take a jump of two-thirds, so that is times one. If we multiply by two, or if we take two-thirds times two, that'll be two jumps. So one, two-thirds, two, two-thirds, three, two-thirds, and then four, two-thirds.

So we just took four jumps of two-thirds each. You could view that as two-thirds plus two-thirds plus two-thirds plus two-thirds. And where does that get us to? It got us to eight-thirds. So notice two-thirds times four is equal to eight-thirds.

Now we could go the other way. We could look at a number line and think about what are ways to represent what the number line is showing us. On Khan Academy, we have some example problems that do it that way, so I thought it would be good to do an example like that.

And so let's label this number line a little bit different. Instead of each of these lines representing a third, let's say they represent a half. So zero, one-half, two halves, three halves, four halves, five halves. What did I write? Five, six? My brain is going ahead: five halves, six halves, seven halves, eight halves, and nine halves.

And let's say we were to see something like this. So if you were to just see this representation—so I'm going to try to draw it like this—if you were to just see this representation, what is that trying to represent? What type of multiplication is that trying to represent?

Well, you could view that as three halves plus another three halves plus another three halves because notice each of these jumps are three one-halves or three halves. So you could view this as three halves plus three halves plus three halves, or another way of thinking about it is this is three jumps of three halves.

So you could also view this as being the same thing as three times three halves. And what are these equal to? Well, three halves plus three halves plus three halves, or three times three halves, it gets you to nine halves.

More Articles

View All
The Butterfly Effect
In 1952, an author named Ray Bradbury published a short story called “A Sound of Thunder.” In it, a hunter named Eckles pays $110,000 to travel with Time Safari, a time machine company that takes hunters back to the time of dinosaurs and allows them to hu…
Stop Caring About What Isn't Yours: Epictetus’ Lessons from My Novel
Stoic philosopher Epictetus didn’t sugarcoat anything. He was direct and told the listener exactly how it was – at least, from the Stoic perspective. His no-nonsense approach, which becomes apparent when reading what’s left of his lectures, is why I love …
Overview of early Judaism part 2 | World History | Khan Academy
[Instructor] In the last video, we started with the story of the Patriarchs in Genesis. How Abraham settles his people in Canaan, but eventually they get enslaved in Egypt. According to the Old Testament, that enslavement lasts for over 500 years until we…
Average atomic mass | Atoms, isotopes, and ions | AP Chemistry | Khan Academy
The thing that I’ve always found amazing about chemistry is it’s an entire field of science that we as human beings have developed to actually understand what is happening at an almost unimaginably small scale. In particular, we’re going to be thinking ab…
Dangling modifiers | Syntax | Khan Academy
Hello Garans, hello Rosie, hi Paige. So in this video, we’re going to talk about something called a dangling modifier. So before we get into what a dangling modifier is, we can sort of talk about just what a modifier is. Rosie, do you want to tell us wha…
Series resistors | Circuit analysis | Electrical engineering | Khan Academy
Now that we have our collection of components, our favorite batteries and resistors, we can start to assemble these into some circuits. Here’s a circuit shown here; it has a battery and it has three resistors in a configuration that’s called a series resi…