yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fraction multiplcation on the number line


2m read
·Nov 10, 2024

So we're going to think about, in this video, is multiplying fractions. So let's say that we wanted to take two-thirds, and we want to multiply it by four. What is this going to be equal to? Pause this video and try to think about it on your own.

All right, now let's work through this together. And to help us, I will use a number line. Let's say that each of these hash marks represent a third. So this is 0, this is one-third, two-thirds, three-thirds, four-thirds, five-thirds, six-thirds, seven-thirds, eight-thirds, and nine-thirds.

So where is two-thirds times one? Well, two-thirds times one is just going to be two-thirds. We just take a jump of two-thirds, so that is times one. If we multiply by two, or if we take two-thirds times two, that'll be two jumps. So one, two-thirds, two, two-thirds, three, two-thirds, and then four, two-thirds.

So we just took four jumps of two-thirds each. You could view that as two-thirds plus two-thirds plus two-thirds plus two-thirds. And where does that get us to? It got us to eight-thirds. So notice two-thirds times four is equal to eight-thirds.

Now we could go the other way. We could look at a number line and think about what are ways to represent what the number line is showing us. On Khan Academy, we have some example problems that do it that way, so I thought it would be good to do an example like that.

And so let's label this number line a little bit different. Instead of each of these lines representing a third, let's say they represent a half. So zero, one-half, two halves, three halves, four halves, five halves. What did I write? Five, six? My brain is going ahead: five halves, six halves, seven halves, eight halves, and nine halves.

And let's say we were to see something like this. So if you were to just see this representation—so I'm going to try to draw it like this—if you were to just see this representation, what is that trying to represent? What type of multiplication is that trying to represent?

Well, you could view that as three halves plus another three halves plus another three halves because notice each of these jumps are three one-halves or three halves. So you could view this as three halves plus three halves plus three halves, or another way of thinking about it is this is three jumps of three halves.

So you could also view this as being the same thing as three times three halves. And what are these equal to? Well, three halves plus three halves plus three halves, or three times three halves, it gets you to nine halves.

More Articles

View All
10 Skills That AI Made Useless
A couple of years ago we said that in the future factories would just have a human to take care of the robots and a dog to take care of the human. You call us crazy, but here we are. The age of AI is finally upon us. You ignored that video back then; let’…
NEW $6000 STIMULUS CHECK | What You MUST Know!
What’s up guys, it’s Graham here. So, these last 24 hours have been quite a whirlwind because, as of yesterday, a brand new finalized stimulus proposal has just been sent to the House to be voted on this upcoming Friday. And wow! I mean, this has been a d…
Why You'll Regret Buying A Home In 2022
What’s gram up! It’s guys, you here. So, the other day, I was minding my own business, reading the internet while sipping on some coffee from bankrollcoffee.com. And all of a sudden, this headline hit me like a ton of bricks: A brand new survey just repor…
Spotting Ecommerce Trends in Shipping Data - Laura Behrens Wu
How about we just start with a quick intro? Cool. Yeah, thanks for having me! My name is Laura. I run a company called Shippo. We power shipping for e-commerce. What that means is we connect our customers, who are e-commerce stores, platforms, and marketp…
The Fermi Paradox II — Solutions and Ideas – Where Are All The Aliens?
There are probably 10,000 stars for every grain of sand on Earth, in the observable universe. We know that there might be trillions of planets. So where are all the aliens? This is the Fermi Paradox. If you want to know more about it, watch part one. Here…
Ramen VR (S19) - YC Tech Talks: Gaming 2020 (November 9th, 2020)
Uh, hi everyone. I’m Andy. I’m one of the co-founders at Ramen VR, and Lauren and I are my other co-founder working on Zenith, a massively multiplayer online world. Zenith is kind of like Dark Souls meets World of Warcraft in that it combines adrenaline …