yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fraction multiplcation on the number line


2m read
·Nov 10, 2024

So we're going to think about, in this video, is multiplying fractions. So let's say that we wanted to take two-thirds, and we want to multiply it by four. What is this going to be equal to? Pause this video and try to think about it on your own.

All right, now let's work through this together. And to help us, I will use a number line. Let's say that each of these hash marks represent a third. So this is 0, this is one-third, two-thirds, three-thirds, four-thirds, five-thirds, six-thirds, seven-thirds, eight-thirds, and nine-thirds.

So where is two-thirds times one? Well, two-thirds times one is just going to be two-thirds. We just take a jump of two-thirds, so that is times one. If we multiply by two, or if we take two-thirds times two, that'll be two jumps. So one, two-thirds, two, two-thirds, three, two-thirds, and then four, two-thirds.

So we just took four jumps of two-thirds each. You could view that as two-thirds plus two-thirds plus two-thirds plus two-thirds. And where does that get us to? It got us to eight-thirds. So notice two-thirds times four is equal to eight-thirds.

Now we could go the other way. We could look at a number line and think about what are ways to represent what the number line is showing us. On Khan Academy, we have some example problems that do it that way, so I thought it would be good to do an example like that.

And so let's label this number line a little bit different. Instead of each of these lines representing a third, let's say they represent a half. So zero, one-half, two halves, three halves, four halves, five halves. What did I write? Five, six? My brain is going ahead: five halves, six halves, seven halves, eight halves, and nine halves.

And let's say we were to see something like this. So if you were to just see this representation—so I'm going to try to draw it like this—if you were to just see this representation, what is that trying to represent? What type of multiplication is that trying to represent?

Well, you could view that as three halves plus another three halves plus another three halves because notice each of these jumps are three one-halves or three halves. So you could view this as three halves plus three halves plus three halves, or another way of thinking about it is this is three jumps of three halves.

So you could also view this as being the same thing as three times three halves. And what are these equal to? Well, three halves plus three halves plus three halves, or three times three halves, it gets you to nine halves.

More Articles

View All
Rounding whole numbers: missing digit | Math | 4th grade | Khan Academy
What digits could replace the question mark in the hundreds place to make this statement true? 4,000 question mark hundreds 29 rounds to 5,000 if we round to the nearest thousand. So we want a number whose nearest thousand is 5,000. It’s closer to 5,000 …
How Generosity Built Tech Giants
Sometimes founders are afraid of asking the like the dumb question, but that’s a worthwhile question to ask. If you can help your customer make more money, they’re probably gonna like you. This is Michael Cybo with Dalton Caldwell, and today we’re going t…
Citizenship in early America, 1789-1830s | Citizenship | High school civics | Khan Academy
In this video and the one that follows, I’m going to give you a brief overview of citizenship rights in early America. Who was considered a citizen? Did having citizenship mean that you had the right to vote? How did citizenship and voting rights change…
Proof: The derivative of __ is __ | Advanced derivatives | AP Calculus AB | Khan Academy
The number e has all sorts of amazing properties. Just as a review, you can define it in terms of a limit: the limit as n approaches infinity of 1 + 1/n to the nth power. You could also define it as the limit as n approaches zero of 1 + n to the 1/nth pow…
Introducing a Yearlong Celebration of National Parks | National Geographic
[Music] National parks are part of our DNA. It’s who we are at National Geographic. For more than 100 years, National Geographic has been committed to national parks. In 1916, we devoted an entire issue of National Geographic magazine to parks. We called…
Charlie Munger on Why Most Investors Can’t Outperform the Market
And by the way, my definition of being properly educated is being right when the professor is wrong. Anybody can spit back what the professor tells you. The trick is to know when he’s right and when he’s wrong. That’s the properly educated person. In the…