yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
The Sun Sneeze Gene
I am a sun sneezer, which is also known as having the photic sneeze reflex, or the autosomal dominant compelling helio-ophthalmic outbursts syndrome. Which basically means if I go from a dark area into somewhere that’s brightly lit - you know, like, looki…
Describing numerical relationships with polynomial identities | Algebra 2 | Khan Academy
What we’re going to do in this video is use what we know about polynomials and how to manipulate them and what we’ve talked about of whether two polynomials are equal to each other for all values of the variable that they’re written in. So whether we’re d…
Remember These 15 People When You Get Rich
Not everyone in your life is created equal. Some people will come into your life, some will walk away, and some you will never forget. Here are 15 people to remember in your life. Welcome to Alux, the place where future billionaires come to get inspired.…
How can a private jet make you money?
Can I have two planes, one 420 and then one 48? So you want one airplane that goes from London to Dubai and one airplane that does basically Western Europe? Yeah, my father runs the business. I’m glad that he let me do this dealing. How many hours do you…
Transformations, part 2 | Multivariable calculus | Khan Academy
So in the last video, I introduced Transformations and how you can think about functions as moving points in one space to points in another. Here, I want to show an example of what that looks like when the input space is two-dimensional. This over here i…
15 Things The Rich Don’t Have to Do
Rich people don’t worry about where their next meal is going to come from or if they’ll be able to make rent on Friday, but these are caused by a direct lack of money. Rich people use their money to build infrastructure around themselves so they don’t hav…