yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Discussion: How to invest in Real Estate
What’s up, you guys? It’s Graham here. So today we’re going to be doing something a little bit different. A friend of mine is interested in investing in real estate and had a whole bunch of questions. So I told him just to go ahead and email me a list of …
Perverted Analogy Fallacy: look out for it.
So a person might make a claim like, “Uh, taxation is just because those being taxed have given, uh, implicit consent by continuing to live in a territory which is subject to the tax.” Um, and you’d like to get them to examine whether or not this idea of…
Surviving a Firefight | No Man Left Behind
One thing you have to understand about an SCES soldier, you know, during them six months of selection, what we do is knock them soldiers down physically, mentally, everything. And they get back up and they keep moving on, and you just keep getting over ea…
United Kingdom vs Great Britain vs England primer
For someone who lives outside of the United Kingdom, the terms United Kingdom and Great Britain and England often feel interchangeable, and they feel like they’re referring to the same thing. But as we’ll see in this video, they aren’t referring to exactl…
Teaching Math with Khanmigo
Meet Conmigo, your aid-driven companion who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many exciting features that support teachers, and this video will showcase ways you can use Kigo to create course-specific mathem…
Are These the Oldest Fossils Ever Found? | National Geographic
Through laser imaging of the samples, we were able to identify the microfossils as the oldest known microfossils on Earth. The microfossils we discovered are about 300 million years older than the previously thought oldest microfossils. So, they are withi…