yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Jeff Bezos Customer Obsession 1999
ready. We want to ensure that we have the knowledge and expertise to deliver value to our customers. Each new venture comes with its own set of challenges, but that’s where our adaptability and willingness to learn come into play. We are committed to und…
Fundraising Panel at Female Founders Conference 2016
All right, I’m excited to have all four of you here. So I’d love for you to each introduce yourselves. If you could introduce yourself and your company and what it does, what batch you went through YC, and you know how much money you’ve raised or the stag…
The Antibiotic Apocalypse Explained
What would you say if we told you that humanity is currently making a collaborative effort to engineer the perfect superbug? A bug that could kill hundreds of millions of people? Well, it is happening right now. We are in the process of creating a superba…
The Power of 'No'
It’s a short simple word: ‘no’. But for some people, it’s extremely difficult to use nonetheless. Especially so-called ‘people pleasers’ have difficulties saying ‘no’ to the people they intend to please. Which is a shame, because the ability to say ‘no’ …
CapitolTV's DISTRICT VOICES - District 5: Electric Sparks From Falling Water
[Music] This is Capital TV. Greetings, citizens! Welcome to the Corilanus 99 Solar Thermal Power Plant in the heart of District 5. This facility generates over 7% of our proud capital’s energy needs. But did you know that you can generate electricity fro…
Africa’s Pristine Delta in 360 - Ep. 1 | The Okavango Experience
That first moment sitting by myself on an island in the Okavango Delta was the most profound moment of my life. It is, to me, a wilderness beyond comparison. The Okavango Delta is Africa’s last remaining pristine Witkin wilderness. It is an oasis in the m…