yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Gordon Ramsay Harvests Glacial Ice Cubes | Gordon Ramsay: Uncharted
After a rough voyage, we’ve arrived at the end of the Tracy Arm Fjord to search for glacial ice. “Oh my God, it’s a jelly! Gorgeous, it’s beautiful!” So we’re looking for what size. “So what we want to look for is something that’s very rounded, right? U…
Common ancestry and evolutionary trees | Evolution | Middle school biology | Khan Academy
[Instructor] Have you ever heard someone call birds living dinosaurs? You might find that hard to believe. After all, the city pigeons that you see wandering around town don’t look particularly ferocious like a Tyrannosaurus rex. But it turns out that our…
PEACH GOES GAGA! Super Mario Bromance -- Black Nerd Comedy
Hey Vsauce, it’s Lacy and today I’m here with some great news. We’ve introduced a new member to our Vsauce family. Although would you really call us a family? I think we’re more of a collection, like a team, like those people that don’t get chosen for Dod…
6 MORE Tricks, Hacks, and Pranks -- "Up All Knight" Episode 3
Knock knock. Who’s there? Panther. Panther who? Panther, no pan! I’m going swimming. [Music] [Applause] Thank you, thank you. Welcome to Up All Night! I’m a knight. I’m a horse. Nay! We’ve got a great show for you today. Topic number one: games an…
Anne Finucane talks about supporting communities through the Covid-19 crisis. | Homeroom with Sal
Hi everyone, Sal Khan here from Khan Academy. Welcome to our daily homeroom live stream! For those of y’all who this is maybe the first time that you’re seeing this, you’re like, “What is this link on YouTube or Facebook?” This is our way of keeping every…
Constructing exponential models | Mathematics II | High School Math | Khan Academy
Derek sent a chain letter to his friends, asking them to forward the letter to more friends. The group of people who receive the email gains 910 of its size every 3 weeks and can be modeled by a function P, which depends on the amount of time T in weeks. …