yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Rival and excludable goods
In this video, we’re going to do a bit of a deep dive in classifying different types of goods. Before we even get into the thick of things, I’m going to make some definitions. So the first definition is that of a rival good. Now, a rival good—one way to …
The Changing World Order Has Just Begun | How To Prepare
What’s up, guys? It’s Graham here. So throughout the last week, there’s been a new topic gaining a lot of attention with over two and a half million views over these last few days. It has to do with the video posted by Ray Dalio titled Principles for Dea…
I’m Averse To People! (A Stoic perspective)
The dynamics of desire and aversion lie at the basis of Stoic thought in regards to how we relate to the world. Aversion means a strong dislike and disinclination towards something or someone. Even though this might seem harmless, it can cause a lot of tr…
Contact Forces | Dynamics | AP Physics 1 | Khan Academy
There are a lot of different types of forces in physics, but for the most part, all forces can be categorized as either being a contact force or a long-range force. So, contact forces, as the name suggests, require the two objects that are exerting a for…
What do we mean by device security? Why should we care about this?
Hi, everyone. Sal Khan here from Khan Academy, and I’m here with Mark Risher, who is director of Product Management at Android at Google, to talk a little bit about device security. So Mark, welcome. And my first question is, what is device security? Are …
Michael Burry's HUGE New Bet on ONE STOCK
[Music] Hey guys, welcome back to the channel! In this video, we are going to be looking at another famous investor’s Q2 2020 13F filing. Of course, the 13Fs have just been dominating the news over the past couple of weeks; they’ve all come out at once. S…