yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
How The Economic Machine Works: Part 3
[Music] As economic activity increases, we see an expansion. The first phase of the short-term debt cycle—spending continues to increase and prices start to rise. This happens because the increase in spending is fueled by credit, which can be created inst…
Things You Should Never Try To Buy With Money
When people get a hold of a bag of money, they tend to buy all the things they lack. But sometimes, even though what they try to buy can be bought, the quality they get is subpar. These are five things you should never try to buy with money. Welcome to a…
The Nightcrawlers Trailer | National Geographic
(ambient music) [President Duterte] In my country, there’s three million drug addicts. I’d be happy to slaughter them to finish the problem. (tense music) [Female News Anchor] Officers have repeatedly been accused of hunting down and executing people, …
One Final Shot: 15 Opportunities That Are Going Away Soon
You have all the time in the world until your world suddenly doesn’t have much time left. This year might be your last chance, so here are 15 things you’ve got one last chance to do. First up, change career fields. We seem to be at a breaking point here.…
How Do Cicadas Make Noise? (In Slow Motion) - Smarter Every Day 299
Hey, it’s me, Destin. There’s a story that I’ve been trying to tell for a very, very long time, and I tried to tell it back in Peru in 2012, and I failed. Today, we’re going to tell that story, but we got to go back to Peru first. Hey, it’s me, Destin. W…
What Do Alien Civilizations Look Like? The Kardashev Scale
An observable universe is a big place that’s been around for more than 13 billion years. Up to two trillion galaxies made up of something like 20,000 billion billion stars surround our home galaxy. In the Milky Way alone, scientists assume there are some …