yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Are There Really Stocks You Can Hold FOREVER? (3 Long-term Stocks I Own)
Hey guys, welcome back to the channel! In this video, we’re going to discuss whether it’s possible to buy some stocks now and be able to hold these stocks for the rest of your life and still do quite well in the process. So, we’re gonna have a look at a l…
The Psychology of "Inside Out"
[Music] What does a child’s mind look like? You have memories of being a child, but that’s not really an accurate representation. It’s an older you reflecting on the past. Your childhood memories are likely different now from the experiences that formed t…
Daily Homeroom with Sal: Monday, April 6
Hello, welcome! This Monday’s a daily homeroom for those of you all who are new here. What this is, something we’re trying to do to keep us all connected as we have the school closures going on throughout the world. Many of y’all know Khan Academy. We’re …
Saving Cabins in the Arctic | Life Below Zero
I’m learning new country this winter, so my greatest challenge is don’t let the land or the weather kill me. The water is cold; you feel get used to it after a while. This is a big chunk of ice. Rico and Skyler have traveled to the Celawat hot springs wit…
Bill Belichick & Ray Dalio on Identifying and Addressing Mistakes: Part 1
Bill, what you do? You have a game Sunday, and you come and you look at the videos, and you look at the mistakes made, and you analyze the mistakes made and how to get better, right? Yes, we do an assessment after every game. We do an assessment after ea…
The Hole Where King Tut’s Heart Used to Be | Overheard at National Geographic
Foreign [Music] When I heard the news of this year’s big show with the National Geographic Museum, which is on the first floor of headquarters, I couldn’t wait to see it. It was going to focus on the world’s most famous Pharaoh, King Tut, in honor of the …