yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
My morning routine
So I’ve really avoided making a morning routine video, specifically because I feel like there’s just so many of them on YouTube, and I feel like morning routines are generally overrated. You know, everyone’s seen thumbnails on YouTube of like, “The One Mo…
Leonard Susskind on Richard Feynman, the Holographic Principle, and Unanswered Questions in Physics
What I wanted to start with is you’ve often been characterized as someone with like non-traditional, you know, kind of out there ideas. Some of which have become, you know, part of the physics canon; some of which, who knows what happened. Who they all be…
Kevin O'Leary | 40 Years Of Photography
I get asked so often about my interest in photography: where did it come from? Why do I do it? Well, let me explain. When I was graduating high school, I told my stepfather, “I really want to become a photographer because I just learned how to develop fil…
The Dark Secrets of the Manhattan Project
In 1946, a 41-year-old hairdresser named Janice Shot came to A Strong Memorial Hospital in Rochester, New York, to be treated for scleroderma. It were a connective tissue condition. She had escaped the violence against Jews in Belarus during the Second Wo…
Rainn Wilson Rappels Across a Ravine | Running Wild with Bear Grylls
RAINN: I guess I just, I’m gonna step off the edge. BEAR: Okay, Rainn. I’m not entirely sure how strong these ropes are, so just ease yourself off it. BEAR (off-screen): Actor Rainn Wilson and I are only a few miles from our extraction point. But a deep r…
Safari Live - Day 114 | National Geographic
And welcome to you from myself, Steve Falconbridge, joined by Fergus on camera. We are out in Toomer, in Sabi Sands, with degrees of 33 degrees Celsius and 89 degrees Fahrenheit. It is a nice warm day; the Sun is beating down. We have developed a bit of a…