yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
The More You Want, the Worse It Gets | The Seven Deadly Sins | GREED
How do you catch a monkey? There’s a simple and effective way to do it without hurting the animal. Once there was a farmer who cut a hole in a coconut, which was just big enough for the monkey to slide in his hand. He tied the coconut to a tree and put a …
How To Turn $25,000 Into A Substantial Return In Real Estate | FT. Scott McGillivray
If you’re an investor and you’re trying to save for retirement, you would put about 50% into stocks and 50% into bonds. But we’re in a very dislocated story about fixed income now. I’ve taken my commercial real estate position from 31% of my portfolio—tha…
Intro to forces (part 1) | Physics | Khan Academy
A force is just a push or a pull, that’s it. But in this video, we’re going to explore the different kinds of pushes and pulls that we will encounter in our daily lives. So let’s start with an example. Imagine you are pulling a chair in your living room u…
Debunking the 'Pointless' Education Myth | StarTalk
People think that when they take math in school, there’s the common response like, “I will never need to use this for the rest of my life,” as they learn trig identities or the Pythagorean theorem or whatever it is that we all remember learning, feeling p…
War with China?
You also talked about what you think is a potential war, frankly, either economic war, uh, or physical war between the U.S. and China, either over Taiwan or other things. Where do you think that sits in this calculus of yours? Well, we are, you know, the…
Becoming Mr. Wonderful | Kevin O'Leary Tells it All
This is the place. Coming up was right here when she said, “You’re fired.” I didn’t even know what fired meant. How dragons are really made? I have never ever in my life worked for someone again and never will. Can’t believe I’m so emotional. [Music] Yo…