yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Documenting Democracy | Podcast | Overheard at National Geographic
Lots of tear gas, lots of rubber bullets, and I think I lived with garlic and onions in my pockets for like several months because that’s one common way to kind of get rid of the effects of tear gas. People would just hand those to you to help you out whe…
Snorkeling With President Obama: How Our Photographer Got the Shot (Exclusive) | National Geographic
I’ve never photographed a president before. This was my first experience, you know, being sort of in the presence of Air Force One and all the security and Secret Service. The day that the president arrived was a perfect day—sunny, clear. I didn’t expect …
Estimating adding large numbers by rounding
Let’s say that we run an egg farm. Yesterday, we went out and we collected 398 eggs from the chickens, and then today we went out and we collected 251 eggs from the chickens. What we’re curious about is roughly how many eggs do we now have that we’ve coll…
Simplifying quotient of powers (rational exponents) | Algebra I | High School Math | Khan Academy
So we have an interesting equation here, and let’s see if we can solve for K. We’re going to assume that m is greater than zero, like always. Pause the video, try it out on your own, and then I will do it with you. All right, let’s work on this a little …
Fireside Chat with Ivana Djuretic of Asher Bio
Welcome back! Next, we have a fireside chat with YC’s Jared Friedman and Ivana Dreadich. Yeah, let’s give them both a big round of applause! Ivana is the founder and founding CEO of Asher Bio. Uh, before we get started, go ahead and take a seat. But befo…
Terms of Trade and the Gains from Trade | AP Macroeconomics | Khan Academy
Let’s imagine a very simple world, as we tend to do in economics, that has two countries that are each capable of producing either pants or shirts, or some combination. So, what we have here are the production possibility curves for each of those countri…