yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Cellular respiration | Energy and matter in biological systems | High school biology | Khan Academy
In this video, we’re going to talk about cellular respiration, which sounds like a very fancy thing, but it’s really just about the biochemical processes that can take things that we find in food and convert it into forms of energy that we can use to do t…
How costs change when fixed and variable costs change | APⓇ Microeconomics | Khan Academy
In the last few videos, we were studying our watch factory, ABC Watch Factory. Based on some data, knowing what our fixed costs are, our labor units, our variable cost, our total cost, and then our total output, and that would be for different amounts of …
The Global Economic Trends Post-Election | Explorer
Where do you see things now that we’re about a month in? I would actually distinguish between what we actually see in the markets and the story that Wall Street is telling. The story that Wall Street is telling is all optimistic. We’re going to have all …
Bill Ackman Asks Warren Buffett about Coca-Cola's Buybacks..
Zone Seven, yes, um, Bill Amman from New York. Uh, there is there a price at which it’s inappropriate for a company to use its capital to buy back its stock? Give me that again. For example, Coca-Cola at 40p. Is that a smart place for Co to deploy capital…
Example dividing a whole by a unit fraction
Let’s think about what 3 divided by 1⁄4 is equal to. Pause this video and see if you can figure it out on your own. And I’ll give you a hint: take three holes and divide it into pieces, or sections, that are each one-fourth of a hole. Then think about how…
Light Pollution 101 | National Geographic
[Narrator] The invention of the electric light bulb, 150 years ago, was one of the most transformative milestones in history. This new form of light, artificial light, brightened and made safe once-dark streets, prolonged waking hours into the evening, an…