yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
The Stock Market Is FREE MONEY | DO THIS NOW
What’s up, Grandma’s guys? Here, so let’s face it, the stock market is easy money. In fact, in just the last 12 months, both the S&P 500, the Dow Jones, and the NASDAQ are all up over 30 percent. Nearly every single stock you can imagine is up substan…
I almost didn't upload this...how to get over self doubt
What’s up, you guys? It’s Graham here. So, I almost didn’t want to upload this video or even make it because I wasn’t sure if it was going to be good enough. It sounds crazy, but that is the entire topic of this video: it’s about self-doubt and it’s abou…
LearnStorm Growth Mindset: Khan Academy's economics content creator on learning strategies
My name is Melanie Fox. I create the AP Macroeconomics and AP Microeconomics content for Khan Academy. Well, if you don’t develop that mindset and you say, “I can’t overcome this,” this barrier, you’ve just made that barrier permanent for yourself. For …
Warren Buffett Just Sold $100 Billion Worth of Stock.
Uh, this question is from Johan Halen, who writes, “You’re sitting on $168 billion of cash, which you told us today is now more than $182 billion.” His questions are: one, what is Buffett waiting for? And two, why not at least deploy some of it? Well, I …
National Geographic Live! - Bringing China and Africa Together to Save Elephants | Nat Geo Live
The future of the African elephant is threatened by the illegal ivory trade. People are unable to organize collective and effective conservation efforts. A way forward is to create a new social space for cross-cultural understanding and engagement. I was…
The Story of Nietzche: The Man Who Killed God
God is dead. God remains dead. And we have killed him. The words of Friedrich Nietzsche have echoed through generations. Although many know the statement and even quote it, only a few people truly understand its meaning. Because, just like much of Nietzsc…