yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Khan Academy Ed Talks with Benjamin Riley - Wednesday, January 5, 2022
Hello and welcome to Ed Talks, where we at Khan Academy talk to folks who are influential in the field of education. I’m Kristen Deserver, the Chief Learning Officer here at Khan Academy, and I am happy today to welcome Ben Riley, who is with Deans for Im…
REAL NYAN CAT ... and more! IMG #38
This is what heaven is like. And things just got a little too real. It’s episode 38 of IMG! Okay, so this is Katy Perry and this is Paula Deen. Uh-oh. Because this is Tom Hanks and this is 50 Cent. Coincidence? Here’s a caterpillar whose pattern resembl…
Safari Live - Day 59 | National Geographic
Well, sorry about that guys. We unfortunately lost our internet signal, so we are back up and running now. Gremlins are gone, everything is all good. The sun is coming out and there’s wonderful things of foot’s shadow and cover. So, messing around with a…
Frank Drake’s Cosmic Road Map | Podcast | Overheard at National Geographic
It’s Halloween 1961. Ten of the world’s leading scientists have found their way to a remote spot in the Allegheny Mountains. They’re there in secret to talk about searching for aliens. Okay, hang on, this isn’t the beginning of a Twilight Zone episode. Th…
Set an Aspirational Hourly Rate
So we covered the skills that you need to get rich: specific knowledge, accountability, leverage, judgment, and lifelong learning. Let’s talk a little bit about the importance of working hard and valuing your time. No one is going to value you more than …
Photographing America’s Wounded Soldiers in Iraq | Nat Geo Live
In 2004, I got a call from LIFE magazine. They said we have this incredible assignment for you. It’s to photograph the wounded coming out of Fallujah. When we flew in, this is one of the first scenes I saw. This is on my birthday in 2004, and it was durin…