yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Pen Pal Experiment: Two Women Swap the Data of Their Daily Lives | Short Film Showcase
[Music] I’m Georgia. I am Italian, but I live in New York. I’m Stephanie. I was born in Denver, Colorado, but I’ve lived in London for the past 13 years. We met each other in person twice. When in September 2014, we decided to collaborate on a year-lon…
Embrace Accountability to Get Leverage
So why don’t we jump into accountability, which I thought was pretty interesting, and I think you have your own unique take on it. The first tweet on accountability was, “Embrace accountability and take business risks under your own name. Society will rew…
This is the BEST skill you can learn to make more money
What’s up you guys, it’s Graham here. So I’m going to be sharing with you guys the most important thing that you should learn if you want to increase your business and start making more money, and that is learning how to sell. This is one of the most impo…
How Weed Eaters Work (at 62,000 FRAMES PER SECOND) - Smarter Every Day 236
Hey, it’s me, Destin. Welcome back to Smarter Every Day. It’s time for the Weed Eater episode. And the way—I wanted to shut the door. The way you can tell that I’ve staged all this is that this Weed Eater’s going to crank up immediately. But here’s the de…
Strategies for dividing multiples of 10, 100 and 1000
We’re going to do in this video is get some practice doing division with numbers that are multiples of 10, 100, 1000, things like that. So, let’s say we wanted to compute what 2400 divided by 30 is. Pause this video and see if you can calculate it using w…
Lion Rapid Response Team | Best Job Ever
[Music] I’m a first responder for lions in Gorong Goa National Park. Every day, we’re out there working with lions. Very slowly, let’s just see what she’s up to. Gorong Goa National Park is undergoing a remarkable recovery after two decades of civil war,…