yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
A Serious Warning To All Investors
What’s up guys, it’s Grahe here. So I had another video that was scheduled to post today, but given the rather abrupt and dramatic selloff throughout everything, including the official start of an S&P 500 bear market, I felt like it would be more appr…
Creativity break: what are some new ways of thinking about problem solving? | Khan Academy
[Music] We have the opportunity to work together with a variety of different voices, colleagues from all over the world who have different strengths that they bring, different perspectives that they bring about life and about how the world operates. Only …
A collection of my best advice on meditation
I’m so glad that some of our conversations are on meditation. I have a number of questions that I get on meditation. Uh, what type? There are just many, many, many types of meditation, and I suppose they’re probably almost all good. I’ve only experienced…
The Power Of Pessimism | Stoic Exercises For Inner Peace
Because my video with 7 stoic exercises for inner peace was so successful, I’ve decided to go a bit deeper into each exercise, giving you a little bit more intellectual baggage to ponder over. I’ll start with explaining the praemeditatio malorum by Marcus…
Use the Force! | Explorer
Innovator Ton Lee is changing the way we study the brain. So that will feel a little wet on your head because this is the nature of this system. Lee’s revolutionary headset records our brain waves and translates them into meaningful data that’s easy to u…
Absurdism: Life is Meaningless
Sisyphus was a great king of Greek mythology. So clever, he was able to outwit the gods themselves. Twice he cheated death; first by capturing Thanatos, the god of death, then by tricking the goddess of the underworld, Persephone, into releasing him back …