yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Meaning of the reciprocal
Let’s talk a little bit about reciprocals. Now, when you first learn reciprocals, some folks will immediately tell you, “Hey, just swap the numerator and the denominator.” So, for example, if I have the fraction two-thirds, the reciprocal of two-thirds, …
Anti-Federalists and Brutus No. 1 | US government and civics | Khan Academy
You first learn about American history; it sometimes seems like it might have been a very easy or somewhat obvious transition from the Articles of Confederation to the Constitution, but it was not. It was a very vigorous debate. As we’ve talked about in p…
How he made $100,000 his first year as a Real Estate Agent
What’s up you guys? It’s Graham here. So I’m actually all the way in London, Ontario for the next week visiting family, and I got linked up with Jeff. Why vote here? And Jeff and I actually go back pretty far. Almost like, yeah, it’s been good. It’s been …
Strategies for dividing by tenths
Let’s do a few more examples of thinking of strategies for dividing decimals. In the future, we’re going to come up with a more systematic way of doing it, but it’s really important to come up with some of these strategies because it gives you an intuitio…
Khan Academy request for donations
Hi everyone, Sal Khan here from Khan Academy. As you might notice, I am back in the walk-in closet where, uh, Khan Academy first started. I am socially distanced like I’m sure many of you all are. I just wanted to give you a quick message because I know …
Should You Move Your Company to Silicon Valley? - Eric Migicovsky, Pebble Founder
Today I want to talk about the question: Should you move your company to Silicon Valley? This is a question that’s pretty close to my heart because I started my company, Pebble, in Waterloo, Ontario, and I decided to move my company to Silicon Valley afte…