yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Regrouping with decimals
We are told to fill in the table with whole numbers to make ten point seven four in two different ways. So, pause this video and see if you can figure that out. So, we really need to fill out what would be what would you put in here for this to be a repr…
The 5 personality traits of Self-Made Millionaires
What’s up, you guys? It’s Graham here. So, let’s face it, there are enough videos already out there showing you how to make a million dollars. Theoretically, if everyone just stuck to the same advice strategically, pretty much you can guarantee you’ll be …
Worked Phillips curves free response question
Assume that the United States economy is currently in a short run equilibrium with the actual unemployment rate above the natural rate of unemployment. Part A says draw a single correctly labeled graph with both the long run Phillips curve and the short …
Dr. Vivek Murthy on navigating the holidays safely during Covid-19
Hi everyone. Welcome to the homeroom live stream! Sal Khan here, uh, very exciting guest today. We’re going to have Vivek Murthy, former Surgeon General of the United States. We’re obviously there’s a lot of things to talk about, health and mental health …
Success IS NOT What you Think it Will Be
So you do not rule out goals because you think they are unattainable? That’s one of your principles? Yeah, so let me clarify that. Until you’re on the journey, you don’t know enough about it. So when you try to assess, can I be successful or not be succe…
How To Get Ahead Of 99% Of People (Do This Now)
What’s big, guys? It’s Graham here. So, there seems to be this recent trend on YouTube of how to get ahead of 99% of people. Some of them, I’ll admit, are wildly genius and insanely insightful, while others seem like a chat GBT inspired list to the most g…