yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing complex numbers in polar form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So we are given these two complex numbers and we want to know what ( w_1 ) divided by ( w_2 ) is. So pause this video and see if you can figure that out.

All right, now let's work through this together. The form that they've written this in actually makes it pretty straightforward to spot the modulus and the argument of each of these complex numbers. The modulus of ( w_1 ) we can see out here is equal to 8, and the argument of ( w_1 ) we can see is ( \frac{4\pi}{3} ) if we're thinking in terms of radians, so ( \frac{4\pi}{3} ) radians.

Then similarly for ( w_2 ), its modulus is equal to 2 and its argument is equal to ( \frac{7\pi}{6} ).

Now in many videos we have talked about when you multiply one complex number by another, you're essentially transforming it. So you are going to scale the modulus of one by the modulus of the other, and you're going to rotate the argument of one by the argument of the other. I guess you could say you're going to add the angles.

So another way to think about it is if you have the modulus of ( \frac{w_1}{w_2} ), well then you're just going to divide these moduli here. So this is just going to be ( \frac{8}{2} ) which is equal to 4.

And then the argument of ( \frac{w_1}{w_2} ): this is, you could imagine you're starting at ( w_1 ) and then you are going to rotate it clockwise by ( w_2 )'s argument. So this is going to be ( \frac{4\pi}{3} - \frac{7\pi}{6} ).

And let's see what this is going to be. If we have a common denominator, ( \frac{4\pi}{3} ) is the same thing as ( \frac{8\pi}{6} - \frac{7\pi}{6} ) which is going to be equal to ( \frac{\pi}{6} ).

And so we could write this. The quotient ( \frac{w_1}{w_2} ) is going to be equal to, if we wanted to write it in this form, its modulus is equal to 4.

It's going to be ( 4 \times \cos\left(\frac{\pi}{6}\right) + i \times \sin\left(\frac{\pi}{6}\right) ). Now ( \cos\left(\frac{\pi}{6}\right) ) we can figure out. ( \frac{\pi}{6} ) is the same thing as a 30 degree angle, and so the cosine of that is ( \frac{\sqrt{3}}{2} ).

( \frac{\sqrt{3}}{2} ) and the sine of ( \frac{\pi}{6} ) we know from our 30-60-90 triangles is going to be one-half. So this is one-half.

And so if you distribute this 4, this is going to be equal to ( 4 \times \frac{\sqrt{3}}{2} ) is ( 2\sqrt{3} ), and then ( 4 \times \frac{1}{2} ) is 2, so plus ( 2i ), and we are done.

More Articles

View All
Why divergent thinkers beat geniuses in the real world | David Epstein
Child prodigies, especially in the YouTube age, are sort of like human cat videos. Whether they’re playing classical music or they’re in a sport or playing chess, you can’t look away from them; they’re so entertaining. We think of that as a trajectory. If…
Michio Kaku: This is Your Brain on a Laser Beam | Big Think
Isaac Asimov was my favorite science fiction writer, and his favorite science fiction story talked about an era far in the future when our bodies would be in pods and we would mentally control beings, beings of pure energy that would go flying around the …
The 7 BEST Tax Write-Offs when Investing in Real Estate!
What’s up you guys, it’s Crypto Brand here. Just a prank! Don’t unsubscribe, don’t dislike, don’t leave angry comments. Today, I want to talk about the seven best tax write-offs in real estate that you might not know about. So let’s start here at the very…
Why you should stop "improving" yourself
Hello! Look at these cookie cutter suburban households that looks so pretty. Good fantastic evening! All right, let’s film this video. All right, okay, okay. So I shaved my head; I think it looks a lot better, to be honest. I was really postponing that. …
Seeing Inside a Thermite Reaction
[Derek] This is the first in a series of videos about a chemical reaction discovered over 125 years ago. It releases a tremendous amount of heat. Oh no, the GoPro. Liquefying metal. It is so hot. It is not an explosive, but it can cause explosions. That i…
12 CRAZIEST Screensavers!
Hey, Vsauce. Michael here, with a video inspired by Orange Pumpkin Seven, who asked me to cover cool screen savers. Now at first, I was like, screen savers? Modern monitors don’t even need them. But then I sleuthed around and realized what a great idea i…