yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Extraneous solutions of radical equations | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's say we have the radical equation (2x - 1 = \sqrt{8 - x}).

So we already have the radical isolated on one side of the equation. We might say, "Well, let's just get rid of the radical; let's square both sides of this equation."

So we might say that this is the same thing as ( (2x - 1)^2 = (8 - x) ). Then we would get, let's see, ( (2x - 1)^2 = 4x^2 - 4x + 1 ) is equal to ( 8 - x).

Now we have to be very, very careful here. We might feel, "Okay, we did legitimate operations; we did the same thing to both sides," that these are equivalent equations, but they aren't quite equivalent.

Because when you're squaring something, one way to think about it is, when you're squaring it, you're losing information. For example, this would be true even if the original equation were (2x - 1 = -\sqrt{8 - x}).

Because if you squared both sides of this, you would also get that right over there, because the negative squared would be equal to a positive. So, when we're finding a solution to this, we need to test our solution to make sure it's truly the solution to this first yellow equation here and not the solution to this up here.

If it's a solution to the right-hand side or not the yellow one, then we would call that an extraneous solution.

So let's see if we can solve this. Let's write this as kind of a standard quadratic.

Let's subtract 8 from both sides to get rid of this 8 over here, and let's add (x) to both sides, so (+x).

We are going to get (4x^2 - 3x - 7 = 0).

Now, let's see; we would want to factor this right over here, and let's see, maybe I could do this by... well, I'll just use the quadratic formula here.

So the solutions are going to be (x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}).

So (x) is going to be equal to (-(-3) + \sqrt{(-3)^2 - 4(4)(-7)}) over (2(4)).

Thus, (x) is equal to (\frac{3 \pm \sqrt{9 + 112}}{8}).

Let me make sure I'm doing this right. So (9 + 112 = 121).

That worked out nicely, so we have (3 \pm \sqrt{121}) all over (8).

Well, that is equal to (3 \pm 11) all over (8).

So that is equal to, if we add (11), that is (14/8), or if we subtract (11), (3 - 11 = -8), negative 8 divided by (8) is (-1).

So we have to think about, you might say, "Okay, I found two solutions to the radical equation."

But remember, one of these might be solutions to this alternate radical equation that got lost when we squared both sides.

We have to make sure that they're legitimate or maybe one of these is an extraneous solution.

In fact, one is very likely the solution to this radical equation, which wasn't our original goal.

So let's see. Let's try out (x = -1).

If (x = -1), we would have (2(-1) - 1 = \sqrt{8 - (-1)}).

So that would be (-2 - 1 = \sqrt{9}).

And so we'd have (-3 = \sqrt{9}).

The principal number, right, this is the positive square root.

This is not true, so this right over here is an extraneous solution.

It is a solution to this one right over here, because notice for that one, if you substitute (2(-1) - 1 = -(\sqrt{8 - (-1)})), so this is (-3 = -3).

So it checks out for this one.

So this one right over here is the extraneous solution, while this one right over here is going to be the actual solution for our original equation.

And you can test it out on your own; in fact, I encourage you to do so.

More Articles

View All
This Is How Old You Are | Brain Games
Brain games is going on vacation! We’ve come to the beach to see how your brain is primed to handle every chapter of life—your tween and teen years, adulthood, parenthood, and even your golden years. Let’s play a game that will show you just what stage o…
Aliens under the Ice – Life on Rogue Planets
Rogue planets are planets that travel through the universe alone. They inhabit the dark and vast space between the stars. Drifting alone through eternal darkness, no light warms their surfaces, and they’re exposed to the freezing cold of outer space. They…
Joe Exotic and the Tiger Trade | Trafficked with Mariana van Zeller
[Car horns blaring] [Phone ringing] [Jungle wildlife calls] OPERATOR (THROUGH PHONE): Prepaid call from. JOE EXOTIC (THROUGH PHONE): Joe Exotic. OPERATOR (THROUGH PHONE): An inmate at the Grady County Jail. This call is also subject to being recorded o…
The Atlantic slave trade
Hey Becca, hey Kim! So in this video we’re going to continue talking about how this arbitrary racial hierarchy was established in America, specifically about the beginning of the Atlantic slave trade and how our society became so stratified by race so ear…
Kevin Hale - How to Pitch Your Startup
This is gonna be part two of a talk I gave at the very beginning of Startup School on evaluating startup ideas. The thing to know about both of these talks is we’ve been talking about them from the point of view of the investor. Basically, it was helpful,…
Why some people DON'T encourage you to sell Real Estate
What’s up you guys? It’s Graham here. I’m trying this completely new cool camera setup; it’s involving my iPhone 7 and this really cool light right behind it. So, I really hope this turns out. I’m making this video completely spur of the moment because I’…