yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How Does A Slinky Fall?


3m read
·Nov 10, 2024

[Applause] [Music]

Now, at some point growing up, most of us have been captivated by one of these: a slinky. But recently, I found out one of the most mesmerizing things about how it moves is something I'd never seen before: how it falls.

So what's so surprising about a falling slinky? Well, to help explain is Phys. Just Rod. The idea is that I hold the top end of the slinky like this and then let the bottom end dangle. So the slinky is dangling freely, and then I'm going to drop the slinky. But I want you to predict what's going to happen. Will the top end fall first? Will the bottom end fall first? Will both ends fall together, or will the two ends approach each other in the middle?

That is a tough question. When I let go, what does the bottom do? Shoot up! It's going to fall. It's grabbing! It's actually going to fall. The bottom goes up, the top goes down. It might come up together. You're going to see the top come down to the middle, and the bottom come up to the top to meet it and then drop. The top will accelerate faster than the bottom.

I reckon that the bottom will stay there; this will come down to there and then they go. All right, well, why don't we give it a shot here? I want you to try to watch the whole slinky as it falls to see what it's doing. Count it down! Right, three, two, one... The problem is it's a bit hard to tell with the naked eye just what's happening. No idea! I think it came up.

The bottom came up? I couldn't be sure; it's all too fast! Yeah, to really appreciate the physics involved, you need to see it in slow motion.

[Music]

Oh, oh gosh, that's great! That's weird! That's unbelievable. It does stay there; it just stays there, like in midair. It's suspended! What? Yeah, it doesn't move at all! How does that work? How does that work? How do you explain that?

Well, you've got to look at what's happening at the bottom end. Gravity is pulling the bottom end down, tension is pulling the bottom end up. The two forces are equal and opposite, so the bottom end remains at rest. Then, I let go at the top end; the tension in the spring changes, but it propagates down the spring coil by coil until it reaches the bottom end, and that takes about a quarter of a second. Then the bottom end falls.

So the tension doesn't actually change at the bottom end until the rest of the slinky has collapsed? Correct. The same principle applies to sporting equipment, like tennis rackets or golf clubs. When contact is made with a ball, a wave travels up the shaft, so the golfer's hands don't feel the hit until after the ball is already on its way to the hole.

Now, as a final extension on this experiment, we've tied a tennis ball to the base of the slinky. We're going to drop it and see what happens this time. Incredibly, the same thing happens! That's because the slinky has simply stretched further and reached a new equilibrium, where the gravitational force down equals the tension force up.

It didn't make a difference; it's the same thing! But that's what makes physics so interesting. That's why I keep doing experiments like this.

[Applause] [Music]

More Articles

View All
Reading Habits of Warren Buffett and Charlie Munger
You know, I obviously recommend, first and foremost, “The Intelligent Investor,” with chapters 8 and 20 being the ones that you really should read. All of the important ideas in investing really are in that book because there are only about three ideas, a…
Shifting absolute value graphs | Mathematics II | High School Math | Khan Academy
This right over here is the graph of y is equal to absolute value of x, which you might be familiar with. If you take x is equal to -2, the absolute value of that is going to be two. Negative -1, absolute value is one. Zero, absolute value is zero. One, a…
Net force | Movement and forces | Middle school physics | Khan Academy
Let’s say that we are in deep space, and there is this asteroid here that, compared to us, is stationary or relative to us is stationary. What we want to do is we want to start to move it. So, what we do is we attach a rocket to one side, and then we igni…
Pushing The Limits Of Extreme Breath-Holding
Inside the tank is Brandon Birchak, and he is going to attempt to hold his breath for this entire video. (dramatic music) Brandon is one of the world’s foremost experts in breath work, so please don’t try this at home. I’ll put his info in the description…
Nancy Pelosi | The Absolute Chaos Of Insider Trading
What’s up guys, it’s Graham here. So, I have to say, I was not planning to make this video, but when I see hundreds of people quietly talking about the latest way to make a lot of money in the stock markets, I’m gonna listen. And believe it or not, the se…
Function as a geometric series | Series | AP Calculus BC | Khan Academy
We’re asked to find a power series for f, and they’ve given us f of x is equal to 6 over 1 + x to the 3 power. Now, since they’re letting us pick which power series, you might say, “Well, let me just find the McLaurin series,” because the McLaurin series …