yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fusion Power Explained – Future or Failure


4m read
·Nov 2, 2024

The fundamental currency of our universe is energy. It lights our homes, grows our food, powers our computers. We can get it lots of ways: burning fossil fuels, splitting atoms, or sunlight striking photovoltaics. But there's a downside to everything. Fossil fuels are extremely toxic. Nuclear waste is... well, nuclear waste. And, there are not enough batteries to store sunlight for cloudy days yet. And yet the sun seems to have virtually limitless free energy. Is there a way we could build a sun on Earth? Can we bottle a star?

[Intro Jingle] The sun shines because of nuclear fusion. In a nutshell, fusion is a thermonuclear process. Meaning that the ingredients have to be incredibly hot. So hot, that the atoms are stripped of their electrons, making a plasma where nuclei and electrons bounce around freely. Since nuclei are all positively charged, they repel each other. In order to overcome this repulsion, the particles have to be going very, very fast. In this context, very fast means "very hot"—millions of degrees. Stars cheat to reach these temperatures. They are so massive that the pressure in their cores generates the heat to squeeze the nuclei together until they merge and fuse, creating heavier nuclei and releasing energy in the process. It is this energy release that scientists hope to harness in a new generation of power plants: the fusion reactor.

On Earth, it's not feasible to use this brute force method to create fusion. So if we wanted to build a reactor that generates energy from fusion, we have to get clever. To date, scientists have invented two ways of making plasmas hot enough to fuse. The first type of reactor uses a magnetic field to squeeze a plasma in a doughnut-shaped chamber where the reactions take place. These magnetic confinement reactors, such as the I.T.E.R. reactor in France, use superconducting electromagnets cooled with liquid helium to within a few degrees of absolute zero. Meaning that they host some of the biggest temperature gradients in the known universe.

The second type, called "Inertial confinement," uses pulses from super-powered lasers to heat the surface of a pellet of fuel, imploding it, briefly making the fuel hot and dense enough to fuse. In fact, one of the most powerful lasers in the world is used for fusion experiments at the National Ignition Facility in the U.S. These experiments and others like them around the world are today just experiments. Scientists are still developing the technology, and although they can achieve fusion, right now, it costs more energy to do the experiment than they produce in fusion. The technology has a long way to go before it's commercially viable, and maybe it never will be.

It might just be impossible to make a viable fusion reactor on Earth, but if it gets there, it will be so efficient that a single glass of seawater could be used to produce as much energy as burning a barrel of oil, with no waste to speak of. This is because fusion reactors would use hydrogen or helium as fuel, and seawater is loaded with hydrogen. But not just any hydrogen will do. Specific isotopes with extra neutrons called deuterium and tritium are needed to make the right reactions. Deuterium is stable and can be found in abundance in seawater, though tritium is a bit trickier. It's radioactive, and there may only be 20 kilograms of it in the world—mostly in nuclear warheads—which makes it incredibly expensive. So we may need another fusion buddy for deuterium instead of tritium.

Helium-3, an isotope of helium, might be a great substitute. Unfortunately, it's also incredibly rare on Earth. But here, the moon might have the answer. Over billions of years, the solar wind may have built up huge deposits of helium-3 on the moon. Instead of making helium-3, we can mine it. If we could sift the lunar dust for helium, we'd have enough fuel to power the entire world for thousands of years. One more argument for establishing a moon base, if you weren't convinced already.

Ok, maybe you think building a mini-sun still sounds kind of dangerous. But they'd actually be much safer than most other types of power plants. A fusion reactor is not like a nuclear plant, which can melt down catastrophically. If the confinement failed, then the plasma would expand and cool, and the reaction would stop. Put simply, it's not a bomb. The release of radioactive fuel, like tritium, could pose a threat to the environment. Tritium could bond with oxygen, making radioactive water, which could be dangerous as it seeps into the environment. Fortunately, there's no more than a few grams in use at a given time, so a leak would be quickly diluted.

So we've just told you that there's nearly unlimited energy to be had at no expense to the environment in something as simple as water. So, what's the catch? Cost. We simply don't know if fusion power will ever be commercially viable. Even if they work, they might be too expensive to ever build. The main drawback is that it's unproven technology. It's a 10 billion dollar gamble, and that money might be better spent on other clean energy that's already proven itself. Maybe we should cut our losses, or maybe, when the payoff is unlimited clean energy for everyone, it might be worth the risk.

Videos like this one take hundreds of hours to make and are made possible by your contributions on patreon.com. If you want to learn more about global energy, here's a playlist about nuclear energy, fracking, and solar power. Let us know in the comments if there are other technologies you want us to explain.

More Articles

View All
Mariya Nurislamova, Founder of Scentbird at the Female Founders Conference
Really bright and sunny today. I can’t unsee the slides, but I guess that’s okay. Hi everyone, my name is Maria. For the past four and a half years, I’ve been building a company called Sunbird. Sunbird is a fragrance subscription service, and we help peop…
Transforming a Studio Apartment | National Geographic
A studio apartment in the big city, a small and strange environment. This human has boldly traveled far from a natural countryside habitat but is not as adapted to this harsh alien world. It threatens her instinctual behavior. Her ears are assaulted like …
TIL: Whale Poop Freshens Our Air | Today I Learned
[Music] Did you know that every time you breathe you need to be grateful to whale poop? It’s true! Whales dive to the depth to feed, and then they come back after the [Music] surface. As they come back up to breathe, they poop. When they poop, they bring …
Mean value theorem example: square root function | AP Calculus AB | Khan Academy
Let ( F(x) ) be equal to the ( \sqrt{4x - 3} ), and let ( C ) be the number that satisfies the Mean Value Theorem for ( F ) on the closed interval between 1 and 3, or ( 1 \leq x \leq 3 ). What is ( C )? So, let’s just remind ourselves what it means for (…
How to Cleanse Your Beauty Regime of Microplastic | National Geographic
Did you know what that plastics could be hiding in your beauty products? Many body products contain plastics, specifically microplastics. They’re plastics that are really tiny; I mean smaller than a grain of rice. Tiny cosmetics, body washes, and toothpas…
Example dividing a whole by a unit fraction
Let’s think about what 3 divided by 1⁄4 is equal to. Pause this video and see if you can figure it out on your own. And I’ll give you a hint: take three holes and divide it into pieces, or sections, that are each one-fourth of a hole. Then think about how…