yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Physical and chemical changes | Chemical reactions | High school chemistry | Khan Academy


3m read
·Nov 10, 2024

So what we have are three different pictures of substances undergoing some type of change, and what we're going to focus on in this video is classifying things as either being physical changes or chemical changes. You might have already thought about this or seen this in a previous science class, but when we talk about a physical change, we're talking about where there could be a change in properties, but we're not having a change in the actual composition of what we're talking about. While in a chemical change, you actually do have a change in composition. How the different constituent atoms and elements match up or connect or bond to each other might be different.

So my first question to you is, pause this video. We have some ice melting here, we have some propane combusting or burning here, and we have some iron rusting here. I want you to think about which of these are physical changes and which of these are chemical changes, and why.

All right, now let's first think about this water, this ice melting. If we wanted to write it in fancy chemical language or chemistry language, we could write this as H2O going from its solid form to H2O going into its liquid form. Now we don't have a change in composition in either state, whether you're looking at this liquid water here or whether you're looking at the solid water there. You'll see a bunch of water molecules; each oxygen is still bonded to two hydrogens, and so you're not having a change in composition. This over here is a physical change. If we kept heating that water up and it started to vaporize, that would also be a physical change, whereas it turns into water vapor. You have your intermolecular forces being overcome, but the covalent bonds between the oxygens and the hydrogens, those aren't breaking or forming in some way.

So once again, when you go from ice to water, it's a physical change. From water to vapor, or you could say from liquid to gas, that is also going to be a physical change. One general rule of thumb when you think about what's going on on a microscopic level—this is a general rule of thumb; it doesn't always apply, and we'll think about an edge case in a little bit—is when you're overcoming intermolecular forces, that tends to be a physical change. But if you have chemical bonds forming or breaking, that would be a chemical change.

Now let's think about what's going on here with the propane. If you were to write the chemical reaction here, it would be propane (C3H8) in gas form. It needs oxygen to combust, so for every mole of propane, we have five moles of molecular oxygen in gas form. When it combusts, you're going to produce three moles of carbon dioxide gas and four moles of water in vapor form. For every one mole of propane and five moles of molecular oxygen, you're going to produce this mix. What you actually have is the bonds in those molecules are breaking and then reforming. So you don't just have a physical change going on here; you have a chemical change.

One way to think about it: you had propane (C3H8) here before. After the reaction, you no longer have the propane here. What you see as fire, which is fascinating, is just very hot gas. That very hot air that you're seeing, and there's going to be some carbon dioxide in there, and there’s going to be some water vapor in there. The reason why it's getting so hot is because this releases a lot of energy.

Now let's think about what's going on here with this iron. If I were to write this as a chemical reaction, for every four moles of iron in solid form plus three moles of molecular oxygen in gas form—that would just be the ambient oxygen around this iron—it is going to produce two moles of iron oxide as a solid. That's what you see there in the orange; that is the iron oxide.

So notice this reaction is forming new ionic bonds in that ferrous oxide. To undergo the reaction, we had to break the metallic bonds of the solid iron and the covalent bonds in the molecular oxygen. So, anytime we are breaking and making these chemical bonds, we have a chemical change.

More Articles

View All
Confucius | The Art of Becoming Better (Self-Cultivation)
Isn’t it the case we should always stay true to ourselves? Which means that we ought to know who we are and organize our lives in ways that are compatible with our personalities? When we look for a partner, for example, we look for someone that we’re comp…
15 Things That Make Rich People Dislike You
In your life, there are going to be a handful of times when you’re around rich people. This is your opportunity to make powerful connections with people who are affluent and influential. Their insights, network input, or sometimes even financial backing w…
Underground Templar Caves | Lost Cities with Albert Lin
Ah! Eliezer? Yes. It’s so nice to meet you. Welcome, welcome. This is beautiful! Yes! This is where the Templars actually hung out? In here? No, no, no. This is not the Templar. We are in the right place, but in the wrong time. Let’s go. If we want to se…
Car buying pitfalls | Car buying | Financial Literacy | Khan Academy
What we’re going to do in this video is think about some things that you should think about when you are buying a car. To help us with that, we have this fake invoice from a car dealership for a car I guess that I am buying. This looks like a used Honda O…
Intro to adjectives | The parts of speech | Grammar | Khan Academy
So grammarians, we have this class of words called adjectives, and what they do is they change stuff. Adjectives change stuff. Adjectives change stuff. They’re part of this larger category of words that we call modifiers because that’s what they do. They …
Neutron Stars – The Most Extreme Things that are not Black Holes
Neutron stars are one of the most extreme and violent things in the universe. Giant atomic nuclei, only a few kilometers in diameter, but as massive as stars. And they owe their existence to the death of something majestic. [Intro music] Stars exist beca…