yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity using algebra | Limits | Differential Calculus | Khan Academy


3m read
·Nov 11, 2024

Let's think about the limit of the square root of 100 plus x minus the square root of x as x approaches infinity. I encourage you to pause this video and try to figure this out on your own. So, I'm assuming you've had a go at it.

First, let's just try to think about it before we try to manipulate this algebraically in some way. So, what happens as x gets really, really, really large? As x approaches infinity, well, even though this hundred is a reasonably large number, as x gets really large—billion, trillion, trillion trillions, even larger than that— you can imagine that the hundred under the radical sign starts to matter a lot less.

As x approaches really, really large numbers, the square root of 100 plus x is going to be approximately the same thing as the square root of x. So, for really large x's, we can reason that the square root of 100 plus x is going to be approximately equal to the square root of x. In that reality, as we keep increasing x's, these two things are going to be roughly equal to each other.

So, it's reasonable to believe that the limit as x approaches infinity here is going to be zero. You're subtracting this from something that is pretty similar to that. But let's actually do some algebraic manipulation to feel better about that instead of this kind of hand-wavy argument about the hundred not mattering as much when x gets really, really large.

Let me rewrite this expression and see if we can manipulate it in interesting ways. So, this is 100 plus x minus the square root of x. One thing that might jump out at you whenever you see one radical minus another radical is: well, maybe we can multiply by its conjugate and somehow get rid of the radicals or at least transform the expression in some way that might be a little more useful when we try to find the limit as x approaches infinity.

So, let's just... and obviously we can't just multiply it by anything arbitrary. To not change the value of this expression, we can only multiply it by 1. So, let's multiply it by a form of one, but a form of one that helps us, that is essentially made up of its conjugate.

Let's multiply this times the square root of 100 plus x plus the square root of x over the same thing, square root of 100 plus x plus the square root of x. Now notice this, of course, is exactly equal to 1. The reason why we like to multiply by conjugates is that we can take advantage of differences of squares.

This is going to be equal to—in our denominator—we're just going to have the square root of 100 plus x plus the square root of x. In our numerator, we have the square root of 100 plus x minus the square root of x times this thing, times the square root of 100 plus x plus the square root of x.

Now, right over here, we're essentially multiplying a plus b times a minus b, which will produce a difference of squares. This top part right over here is going to be equal to—let me do this in a different color—it's going to be equal to this thing squared minus that thing squared.

So, what's (100 plus x) squared? Well, that's just (100 plus x)(100 plus x), and what is (square root of x) squared? Well, that's just going to be x. So, we have minus x. We do see that this is starting to simplify nicely. All of that over the square root of 100 plus x plus the square root of x.

These x's, x minus x, will just be nothing. So we are left with a hundred over the square root of 100 plus x plus the square root of x. We could rewrite the original limit as the limit as x approaches infinity. Instead of this, we've just algebraically manipulated it to be this: the limit as x approaches infinity of 100 over the square root of 100 plus x plus the square root of x.

Now it becomes much clearer. We have a fixed numerator—this numerator just stays at 100—but our denominator right over here is just going to keep increasing. It's going to be unbounded. So, if you're just increasing this denominator while you keep the numerator fixed, you essentially have a fixed numerator with an ever-increasing, or a super large, or an infinitely large denominator.

That is going to approach zero, which is consistent with our original intuition.

More Articles

View All
The Angel Philosopher Naval Ravikant on Reading, Making Decisions, Habits, and the Purpose of Life
[Music] Hey, it’s Shane Parrish, and welcome to a new episode of The Knowledge Project, where we deconstruct actionable strategies that you can use to make better decisions, learn new things, and live a better life. This time around, we have the amazing N…
How We Make Money on YouTube with 20M Subs
In 2023, Kurzgesagt has existed for 10 years, insanely long in internet years. We are among the largest sciency channels on Youtube and still a bit of a black box to people. So let us talk about ourselves a bit in three parts: our backstory, how we financ…
Kevin O’Leary’s Rules for Avoiding Failure in Your 20s & 30s
The reason I invest in credit card companies is because I want some of those profits. Don’t let me profit from you; that’s crazy. I can’t make 21% in the market every year. Hi there! Chef Wonderful here again. I thought it’d be a great time of the year: …
Erin Frey on Therapy
Hi, I’m Ain. I’m the co-founder and CEO of Kip, a Y Combinator startup that helps you get amazing therapy. I started going to therapy when I realized that stress and anxiety were affecting my ability to do good work. I was waking up anxious every morning…
Why the gradient is the direction of steepest ascent
So far, when I’ve talked about the gradient of a function, and you know, let’s think about this as a multivariable function with just two inputs. Those are the easiest to think about, uh, so maybe it’s something like x² + y². A very friendly function. Wh…
Preparing for the Hunt | Live Free or Die
[Music] It’s the final week of deer hunting season and Frontiersman Colbert’s last chance to get big game before winter. It’s important to clean your weapon. I don’t have any gun oil with me, but I’ve got pig fat, and pig fat’s going to work just fine. …