yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity using algebra | Limits | Differential Calculus | Khan Academy


3m read
·Nov 11, 2024

Let's think about the limit of the square root of 100 plus x minus the square root of x as x approaches infinity. I encourage you to pause this video and try to figure this out on your own. So, I'm assuming you've had a go at it.

First, let's just try to think about it before we try to manipulate this algebraically in some way. So, what happens as x gets really, really, really large? As x approaches infinity, well, even though this hundred is a reasonably large number, as x gets really large—billion, trillion, trillion trillions, even larger than that— you can imagine that the hundred under the radical sign starts to matter a lot less.

As x approaches really, really large numbers, the square root of 100 plus x is going to be approximately the same thing as the square root of x. So, for really large x's, we can reason that the square root of 100 plus x is going to be approximately equal to the square root of x. In that reality, as we keep increasing x's, these two things are going to be roughly equal to each other.

So, it's reasonable to believe that the limit as x approaches infinity here is going to be zero. You're subtracting this from something that is pretty similar to that. But let's actually do some algebraic manipulation to feel better about that instead of this kind of hand-wavy argument about the hundred not mattering as much when x gets really, really large.

Let me rewrite this expression and see if we can manipulate it in interesting ways. So, this is 100 plus x minus the square root of x. One thing that might jump out at you whenever you see one radical minus another radical is: well, maybe we can multiply by its conjugate and somehow get rid of the radicals or at least transform the expression in some way that might be a little more useful when we try to find the limit as x approaches infinity.

So, let's just... and obviously we can't just multiply it by anything arbitrary. To not change the value of this expression, we can only multiply it by 1. So, let's multiply it by a form of one, but a form of one that helps us, that is essentially made up of its conjugate.

Let's multiply this times the square root of 100 plus x plus the square root of x over the same thing, square root of 100 plus x plus the square root of x. Now notice this, of course, is exactly equal to 1. The reason why we like to multiply by conjugates is that we can take advantage of differences of squares.

This is going to be equal to—in our denominator—we're just going to have the square root of 100 plus x plus the square root of x. In our numerator, we have the square root of 100 plus x minus the square root of x times this thing, times the square root of 100 plus x plus the square root of x.

Now, right over here, we're essentially multiplying a plus b times a minus b, which will produce a difference of squares. This top part right over here is going to be equal to—let me do this in a different color—it's going to be equal to this thing squared minus that thing squared.

So, what's (100 plus x) squared? Well, that's just (100 plus x)(100 plus x), and what is (square root of x) squared? Well, that's just going to be x. So, we have minus x. We do see that this is starting to simplify nicely. All of that over the square root of 100 plus x plus the square root of x.

These x's, x minus x, will just be nothing. So we are left with a hundred over the square root of 100 plus x plus the square root of x. We could rewrite the original limit as the limit as x approaches infinity. Instead of this, we've just algebraically manipulated it to be this: the limit as x approaches infinity of 100 over the square root of 100 plus x plus the square root of x.

Now it becomes much clearer. We have a fixed numerator—this numerator just stays at 100—but our denominator right over here is just going to keep increasing. It's going to be unbounded. So, if you're just increasing this denominator while you keep the numerator fixed, you essentially have a fixed numerator with an ever-increasing, or a super large, or an infinitely large denominator.

That is going to approach zero, which is consistent with our original intuition.

More Articles

View All
Worked example: Calculating the pH after a weak acid–strong base reaction (excess acid)
Let’s look at a reaction between a weak acid, acetic acid, and a strong base, sodium hydroxide. Let’s say we have 100 milliliters of a 2.0 molar solution of aqueous acetic acid, and that’s mixed with 100 milliliters of a 1.0 molar solution of aqueous sodi…
Safari Live - Day 162 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. One minute, please. Always remember to switch the lights off. We’re ready for safari! Sorry, everybody, you know sometimes t…
Linear vs. exponential growth: from data | High School Math | Khan Academy
The number of branches of an oak tree and a birch tree since 1950 are represented by the following tables. So for the oak tree, we see when time equals 0 it has 34 branches. After three years, it has 46 branches, so on and so forth. Then for the birch t…
Mr. Freeman, part 59
Have you noticed what happened to words? What are you saying there, again? Ew-w-w! Your words seem to have decayed! Spoiled! Well, they still look and sound the same, but you know, what is the problem? THEY MEAN BUGGER ALL!!! Look for yourself. At some p…
Getting Water in the Arctic | Life Below Zero
[Music] Not everything goes the way you want it to go. You don’t get to choose how life unfolds; you just get to live it. [Music] Looks like I’ve got good moving water, but it looks like it’s out there quite a ways right now here in Kavik. This is the cha…
Cracking the Enigma of Ollama Templates
In olama, the template and parameters and maybe the system prompt and license are all part of the model. This is one of the strengths of the platform and it’s why it’s the easiest to use for beginners and advanced users alike. Every other tool that runs A…