yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
Holland vs the Netherlands
Welcome to the Great nation of Holland: where the tulips grow, the windmills turn, the breakfast is chocolatey, the people industrious, and the sea tries to drown it all. Except, this country isn’t Holland. It’s time for: The Difference Between Holland, t…
Derivation of the mirror equation | Geometric optics | Physics | Khan Academy
So imagine you’ve got an object sitting in front of this concave mirror. If you wanted to figure out where the image is formed, you can draw ray tracings. One ray you can draw is a parallel ray that goes through the focal point, but these rays are reversi…
How Much Information?
Have you ever noticed that people speaking Spanish sound like they’re talking really fast? Does this mean they are able to communicate information faster than English speakers? One reason why Spanish sounds so fast is because more syllables are spoken per…
Imploding Drum
Today I’m at the University of Sydney with Dr. Phil, and we’re talking about the pressure that all of us are under. You are under a lot of pressure, probably 10,000 kg. 10,000 kg is pressing in on my whole body, all from all sides. Where does all this pre…
Ron Conway at Startup School 2013
Good morning! Good morning! Mic, mic works. Okay, well, thanks for coming, Ron. We’re delighted to have you here, and we’re going to jump right into things. Um, I wanted to talk about Twitter first because Jack Dorsey is coming here later, and they’re go…
These Mini-Ships Teach Pilots How to Navigate Major Waterways | National Geographic
When you look at the ships, you may think that they’re small toys. But the minute you get on it, the power is to scale to the size, and it becomes very real, very quickly. When we build a new ship, the first question is, is this ship correct? Is it close …