yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
Worked Phillips curves free response question
Assume that the United States economy is currently in a short run equilibrium with the actual unemployment rate above the natural rate of unemployment. Part A says draw a single correctly labeled graph with both the long run Phillips curve and the short …
Warren Buffett: How Long Can This Stock Bubble Last? (2021)
It’s no secret that stock prices have continued to hit all-time highs. All three major American stock market indices, the S&P 500, the Dow Jones Industrial Average, and the Nasdaq, all are at record highs. That has led to some very prominent and highl…
Could Solar Storms Destroy Civilization? Solar Flares & Coronal Mass Ejections
The Sun, smooth and round and peaceful. Except when it suddenly vomits radiation and plasma in random directions. These solar flares and coronal mass ejections, or CMEs, can hit Earth and have serious consequences for humanity. How exactly do they work? H…
A.I. Policy and Public Perception - Miles Brundage and Tim Hwang
Alright guys, I think the most important and pressing question is, now that cryptocurrency gets all the attention and AI is no longer the hottest thing of technology, how are you dealing with it? Yeah, Ben Hamner of Kaggle had a good line on this. He sai…
Car payment calculation | | Car buying | Financial Literacy | Khan Academy
So let’s think a little bit about how you might likely pay for a car. Now, there’s really three ways to pay for a car. One, you might just have enough cash in your bank account and you could pay for it outright. Another model is that you could rent the ca…
SURPRISE VLOG: Las Vegas
Okay, enough of that. This is not going to be a cinematic vlog here; I’m just showing you what I’ve been up to lately and right now. I need to get from London to Las Vegas and back again in 72 hours. This is guaranteed to be a jet lag disaster. But I have…