yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
How Metric Paper Works & The Whole of the Universe
This is not just a sheet of paper; it is an invitation to everything that exists. For this paper is metric, which has a special property other pages don’t—dividing into each twain is half the whole. Uh, obviously, I guess, but each half is also the same s…
Bivariate relationship linearity, strength and direction | AP Statistics | Khan Academy
What we have here is six different scatter plots that show the relationship between different variables. So for example, in this one here, in the horizontal axis, we might have something like age, and then here could be accident frequency. Accident frequ…
The Moment kurzgesagt Changed Forever
Hey you, so nice of you to join us! We want to tell you about something that changed kurzgesagt forever. Kurzgesagt started out as a small-scale passion project. But creating animated science videos that are free for everyone doesn’t pay the bills – DAMN …
The Death Of Bees Explained – Parasites, Poison and Humans
Human society is extremely complex and fragile, built upon various pillars. One of them is the honey bee. One out of three meals eaten by humans is made possible by honey bees. They are so important that if all the honey bees were to die out, thousands of…
Inside an Inspiring School in India That Prepares Blind Youth for Life | National Geographic
[Music] [Music] When the doctor told our parents that I’m blind, first of all, they did not believe that I’m blind. My mother left. [Music] Me. If there were not this school, the students would wither away. They live their life without dignity because bak…
Why I Owe The IRS $1.5 Million Dollars
What’s up here, guys? It’s Upgram, and I gotta say, I was actually pretty blown away by how many people enjoyed my Joe Biden tax plan video and wanted to hear more. No joke, when I made the video, I was worried that no one would want to hear about the top…