yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
Long term economic profit for monopolistic competition | Microeconomics | Khan Academy
We have already thought about the demand curves for perfect competition and monopolies and the types of economic profit that might result in. In this video, we’re going to focus on something in between, which we’ve talked about in previous videos, which i…
Reasoning about factors and multiples
We’re told we know that 5 times 3 is equal to 15. Yep, that’s true. So which of the following statements are also true? It says to choose two answers. So pause this video and see if you can work through that. All right, now let’s go through them one by o…
if-elif-else | Intro to CS - Python | Khan Academy
We can use an if statement to control that a particular block of code only executes when the condition evaluates to true. But what if we want to do something else only when the condition evaluates to false? Well, we can add another if statement and try an…
Example: Graphing y=3⋅sin(½⋅x)-2 | Trigonometry | Algebra 2 | Khan Academy
So we’re asked to graph ( y ) is equal to three times sine of one half ( x ) minus two in the interactive widget. And this is the interactive widget that you would find on Khan Academy. It first bears mentioning how this widget works. So this point right …
Collision theory and the Maxwell–Boltzmann distribution | Kinetics | AP Chemistry | Khan Academy
Collision theory can be related to Maxwell-Boltzmann distributions. First, we’ll start with collision theory. Collision theory says that particles must collide in the proper orientation and with enough kinetic energy to overcome the activation energy barr…
MATH MAGIC and a NEW LEANBACK
Hey, Vsauce. Michael here. And this video is to tell you that I released a brand new Vsauce leanback - a playlist of some of my favourite videos from all over YouTube, with me hosting in between. You can only really watch it on a computer, so if you’re on…