yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
Immerse Yourself in the Rugged Beauty of Ireland's West Coast | National Geographic
I don’t think anybody can live and be here for very long periods of time without falling completely in love with the place in the sea and the hills and everything it has to offer. The cosine Harrods, there’s no defense against the Atlantic Ocean. You have…
Into the Forests | Branching Out | Part 1
April is Earth month, a time to celebrate our natural world. It’s also a call to reflect on our impact and think of new ways that we can protect and restore the planet. I’m Ginger Z, chief meteorologist at ABC News. My family and I are hitting the road t…
Writing inequalities to represent real-world problems | Grade 8 (TX) | Khan Academy
We’re told at the beginning of summer the city pool advertises a special offer. Swimmers can pay an initial fee of $20, and then the daily admission will be $4 per day. Without the special offer, the standard price is $8 per day. Irene wants to know after…
Can You Picture That? This Photographer Can and Does | Podcast | Overheard at National Geographic
Foreign [Music] November 2nd, and I am getting into my Tyvek suit. So, because bats carry diseases that we don’t know about, we have to wear PPE. And we all know about PPE because of COVID. So that’s Mark Thiessen. He’s a staff photographer for National G…
What the Discovery of the Last American Slave Ship Means to Descendants | National Geographic
[Music] I was born in this four-room house right next to the Union Baptist Church in Plateau Mobile, Alabama. [Music] In this house, my grandmother had taught us a whole lot about this history, but me being a little girl, I didn’t know that this history w…
Probability of sample proportions example | Sampling distributions | AP Statistics | Khan Academy
We’re told suppose that 15% of the 1750 students at a school have experienced extreme levels of stress during the past month. A high school newspaper doesn’t know this figure, but they are curious what it is. So they decide to ask us a simple random sampl…