yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
BLINK | Official Trailer - Audio Description | National Geographic Documentary Films
Logo Disney. A woman and girl watch the desert sunset. If you close your eyes, what do you feel? Sand slips through her hands, the wind. I feel the sun. And do you think even if you couldn’t see, you’d be able to enjoy a place like this? Logo documentary…
Khanmigo is now available to the public (US only)| Personalized AI tutor & teaching assistant
Hi everyone, Sal Khan here, and I’m excited to announce that Khan Migo, our generative AI-powered tutor on Khan Academy, is now generally available! This is especially powerful as we go into back to school. If you have Khan Migo, your student has it on th…
Warren Buffett: Should You Invest in a Stock With a High P/E Ratio?
Olympic diving and Olympic diving. You know they have a degree of difficulty factor, and if you can do some very difficult dive, the payoff is greater if you do it well than if you do some very simple dive. That’s not true in investments. You get paid jus…
The Murder of Kim Jong-un's Brother | North Korea: Inside the Mind of a Dictator
♪ ♪ NARRATOR: February 13th 2017. Kuala Lumpur International Airport. Kim Jong-un’s brother enters the terminal, unaware that two female assassins are also at the airport. Now, for the first time on television, one of the assassins tells her full extraor…
The Pioneer of Ecstasy in the US | Narco Wars: The Mob
The first time I took ecstasy was in Manchester. Thinking, “What is this? This is pretty boring.” And all of a sudden, my knees just completely buckled, and time just started to stand still. The whole room is just throbbing, and everybody’s dancing, and t…
7 Steps to Start Building Long-Term Wealth (The Richest Man in Babylon)
George S. Clayson first published The Richest Man in Babylon in 1926. Today, this book is still regarded as one of the best personal finance books ever written due to the wealth of wisdom that lies within its pages. Now, in this book, Clayson focuses on s…