yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
Iceland Is Growing New Forests for the First Time in 1,000 Years | Short Film Showcase
What I love about working in forestry is the chance, every once in a while, to get out of the office and walk in the woods. To see the forest growing, to see that we’re actually doing some good, is a very rewarding thing—a very satisfying. But Iceland is…
How To Invest In 2024 (The BEST Way To Get Rich)
What’s up you guys? It’s Graham here. So, CNBC recently found that 63% of Americans would be unable to pay for a $500 emergency. When I first read this, my initial thought was that this is unacceptable and it has to change. After all, the unfortunate rea…
Is Credit Suisse Triggering another 2008 Stock Market Crash?
I don’t know if you guys use Twitter to Snapchat with what’s going on in the finance world, but I probably checked Twitter maybe two or three times a day. Over the past week, one thing that’s been catching my attention is the amount of people talking abou…
Bill Belichick & Ray Dalio on Dealing with Arrogant Players
Do you get paraders that are too arrogant? Well, I would say sometimes when we get the rookies in from college, there’s a decru process that goes on. Uhhuh, some of his players come out in college, he gets drafted. You know, he’s the best player on the t…
Rick and Morty Writer: Ryan Ridley
All right, man. We should probably jump into Rick and Morty at some point. Um, before we do that, uh, how about you just like give your background of up until Rick and Morty? So, I didn’t really know what I was doing with my life. I was a terrible studen…
Kitten Lady on Orphaned Cat Care | National Geographic
Hello, hello everybody, and welcome to my livestream! How are you guys? Happy International Cat Day! My name is Hannah Shaw, and I am known as Kitten Lady. I am a professional animal rescuer and a humane educator. I specialize in saving the lives of the t…