yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
12 STOIC SECRETS FOR DOING YOUR BEST | STOICISM INSIGHTS
Imagine going through your entire life believing that every single setback, every challenge, was actually setting you up for something greater. Now, I know that might sound like just another inspirational quote you scroll past on your social media feed, b…
Calculating the equation of a regression line | AP Statistics | Khan Academy
In previous videos, we took this by variant data and we calculated the correlation coefficient. Just as a bit of a review, we have the formula here, and it looks a bit intimidating. But in that video, we saw all it is, is an average of the product of the …
AC analysis intro 2
So in the last video, we started working on the analysis of an RLC circuit that had a forcing function. The math for doing that gets really hard, and so what we decided to do was see what happens if we limit ourselves to using just sinusoidal inputs that …
An Interview with a Meth Dealer | Trafficked with Mariana van Zeller
Foreign [Music] [Music] Hi, I’m Mariana. How are you doing? Fantastic! How many people are you expecting to come tonight? You have a phone full of messages. Yes, tons of them—50 messages. [Music] And everyone there, they’re trying to buy drugs from you. I…
4 Reasons to Invest NOW | Ask Mr Wonderful Shark Tank's Kevin O'Leary
Sometimes the entire year’s return comes in just a few days, and if you’re not invested in those days, you miss out. Your 20s and 30s are prime earning years. The longer you wait, the less you will have in retirement, so it’s best you get started right no…
Voltage divider | Circuit analysis | Electrical engineering | Khan Academy
Now I’m going to show you a circuit that’s called a voltage divider. This is a name we give to a simple circuit of two series resistors. So I’m just going to draw two series resistors here, and it’s a nickname in the sense of it’s just a pattern that we s…