yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
Why Are 96,000,000 Black Balls on This Reservoir?
(Shade balls rolling) - These are shade balls. They’re being dumped into this water reservoir in Los Angeles. And contrary to what you may have heard, their main purpose is not to reduce evaporation. So what are they really for? To find out, I’m visiting …
The Most Successful Shark Tank Deals and Products | Kirk Minihane
[Music] Good, so you’re live now on the Kirkman the Hand show. Uh, nice to meet you. Normally, normally, I said this earlier, I am podcast wonderful, but I’m gonna hand that over to you today out of respect. I think you’ve earned that; you’ve earned that …
Calculating a z statistic in a test about a proportion | AP Statistics | Khan Academy
The mayor of a town saw an article that claimed the national unemployment rate is eight percent. They wondered if this held true in their own town, so they took a sample of 200 residents to test the null hypothesis. The null hypothesis is that the unemplo…
Exposing "Fake YouTube Gurus" and the business of Selling Courses
There are very few industries out there where you have the potential to make tens of millions of dollars with no employees, no overhead, no office, no physical products, and nothing but a computer, an internet connection, and something to teach. There are…
Multiplying complex numbers graphically example: -3i | Precalculus | Khan Academy
Suppose we multiply a complex number z by negative 3i, and they show us z right over here. Plot the point that represents the product of z and negative 3i. So pause this video and see if you can work through that. All right, now let’s do it step by step.…
Understanding scatterplots | Representing data | Grade 5 (TX TEKS) | Khan Academy
We’re told the table below shows the ages of six people and the number of pets they own. So, this row is age of people, and then the second row is the number of pets. So the person who’s nine years old owned four pets. The person who’s eight years old ow…