yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
Winner Winner Raccoon Dinner! | Dirty Rotten Survival
It’s Dick’s game of choice: a good old-fashioned roadkill barbecue. Smells pretty good! These guys want modern conveniences. I’m gonna give them their food in a birch bark serving tray, Allah the hillbilly hibachi! For this roadkill cook-off, the guys wil…
Why Simplicity is Power | Priceless Benefits of Being Simple
Once upon a time, in a quiet mountain village lived a humble stonecutter named Taro. Every day, Taro would shape rocks into bricks and tiles. He was content with his simple life and found joy in his craft. One day, a group of wealthy merchants passed by. …
Simple Products That Became Big Companies – Dalton Caldwell and Michael Seibel
A product that doesn’t work with lots of features is infinitely worse than a product with one feature that works. And again, like, let’s play that out. Let’s play that out. Right? Imagine if it’s like they were like, you get health care and you get benef…
Epic Slow-Mo Drum Implosions!
[Music] So a while back, I did an imploding drum experiment. But at the time, I didn’t have a very good high-speed camera, and so I used something called optical flow to interpolate between the frames. It basically just tries to add in what must have happ…
Car buying unit overview | Teacher resources | Financial Literacy | Khan Academy
Hi teachers, Welcome to the unit on car buying. Now, car buying—or leasing, I should say—getting a car somehow is something that most people have to do at least once in their life. The goal of this unit is to help your students navigate that process. Fi…
Shopping For Affordable Watches With Teddy Baldassarre
Teddy’s learning he’s the grasshopper; he’s learning from the master. That’s the way I look at it. [Laughter] Garbage! You know, when you’re a fashionista like me, you can pick style out five yards away already. I’m kicking Teddy’s ass here; this is amazi…