yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
The Mother Of All Bubbles Is Here
What’s up? Grandma’s guys here! So lately, there’s been this ominous looking chart. It’s beginning to scare a lot of investors, and today we have to talk about it. On the left, we see the Japanese stock market, which peaked in 1992, crashed 80 percent ov…
Take Arbitrarily Shaped Screenshots with LassoCapture
Hey guys, this is Mackinson, one with a small video on the latest Mac app that we made. This app basically allows you to take a screenshot of any part of your screen without it having to be square. So it’s like the lasso tool in Photoshop; you can just se…
15 Brutal TRUTHS People Don't Want To Hear
[Music] This is the Sunday motivational video. Every Sunday, we bring you a different type of video which should improve your life. Today, we’re looking at 15 brutal truths that people don’t want to hear. Welcome to a lox calm, the place where future bill…
What's The Most Dangerous Place on Earth?
Hey, Vsauce. Michael here. 93% of all the humans who have ever lived are dead. For every person alive right now, there are 15 people who are no longer alive. The Earth is dangerous… but where is the most dangerous place on Earth? Ignoring freak occurrenc…
RC step response 3 of 3 example
In the last video, we worked out the step response of an RC circuit, and now we’re going to look at a real example. So, this is our answer. This is the step response, the total response to our circuit to a step input. What does this look like? So, I’m go…
Bill Ackman on Starting His Own Hedge Fund at 26 and Activist Investing
To put this in context, you were mid-20s and I had just gotten—I just started as a rookie professor two years before. So, Bill, at the time, was trying to set up an interesting business, which ultimately became Gotham Partners. So, for those of you who ar…