yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
Why Life Seems to Speed Up as We Age
I remember when I was a kid waiting an hour for my favorite TV show to come on, which was Sharon, Lois & Bram. That felt like eternity, but as I’ve gotten older, everything seems to have sped up. Time is going much faster. That’s something virtually e…
Food Too "Ugly" to Sell Becomes a Feast for 5,000 People | National Geographic
Feeding the 5,000 is a celebration of the solutions to food waste, where we feed 5,000 people a delicious meal made entirely out of food that would otherwise have gone to waste. America is a country which has a massive problem of food waste. Forty percent…
Comparing proportionality constants
We’re told that cars A, B, and C are traveling at constant speeds, and they say select the car that travels the fastest. We have these three scenarios here, so I encourage you to pause this video and try to figure out which of these three cars is travelin…
Nike vs Adidas: Who Won The Game?
The sneakers industry can be described in one word: ruthless. This is precisely the reason why a handful of companies have continued to dominate the market for decades. But who are the top two leaders in the industry? Well, you might know the answer alrea…
How to stop quarantine from ruining your life
When self-isolation first started, I was like, “You know what? This is gonna be a piece of cake! I work from home, I’m at home all the time, this should be a cakewalk.” [Applause] [Music] It was a lot harder than I thought it would be, especially at the b…
All in for Education: Keep Khan Academy Free
Hi everyone, Sal Khan here. Just to remind everyone that Khan Academy is a not-for-profit organization. That means I don’t own Khan Academy; no one owns Khan Academy. We are a public charity, and we can only do the work we do through donations from folks …