yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example: Transforming a discrete random variable | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Anush is playing a carnival game that involves shooting two free throws. The table below displays the probability distribution of ( x ), the number of shots that Anush makes in a set of two attempts, along with some summary statistics.

So here's the random variable ( x ): it's a discrete random variable; it only takes on a finite number of values. Sometimes people say it takes on a countable number of values, but we see he can either make 0 free throws, 1, or 2 of the two. The probability that he makes zero is here, one is here, and two is here. They also give us the mean of ( x ) and the standard deviation of ( x ).

Then they tell us if the game costs Anush fifteen dollars to play and he wins ten dollars per shot he makes, what are the mean and standard deviation of his net gain from playing the game ( n )?

Right, so let's define a new random variable ( n ), which is equal to his net gain. Net gain can be defined in terms of ( x ). What is his net gain going to be? Well, let's see: ( n ) is going to be equal to 10 times however many shots he makes. So it's going to be ( 10 \times x ), and then no matter what, he has to pay 15 dollars to play, minus 15.

In fact, we could set up a little table here for the probability distribution of ( n ). So let me make it right over here. I'll make it look just like this one. ( n ) is equal to net gain, and here we'll have the probability of ( n ). There's three outcomes here.

The outcome that corresponds to him making 0 shots: well, that would be ( 10 \times 0 - 15 ); that would be a net gain of negative 15. It would have the same probability ( 0.16 ).

When he makes one shot, the net gain is going to be ( 10 \times 1 - 15 ), which is negative 5. But it's going to have the same probability; he has a 48% chance of making one shot, and so it's a 48% chance of losing 5.

Last but not least, when ( x ) is 2, his net gain is going to be positive 5, ( +5 ). And so this is a 0.36 chance.

So what they want us to figure out are what the mean and standard deviation of his net gain are.

First, let’s figure out the mean of ( n ). Well, if you scale a random variable, the corresponding mean is going to be scaled by the same amount. And if you shift a random variable, the corresponding mean is going to be shifted by the same amount.

So the mean of ( n ) is going to be ( 10 \times \text{mean of } x - 15 ), which is equal to ( 10 \times 1.2 - 15 ). This is ( 1.2 ), so it is 12 minus 15, which is equal to negative 3.

Now the standard deviation of ( n ) is going to be slightly different. For the standard deviation, scaling matters. If you scale a random variable by a certain value, you would also scale the standard deviation by the same value.

So this is going to be equal to ( 10 \times \text{standard deviation of } x ). Now you might say, what about the shift over here? Well, the shift should not affect the spread of the random variable. If you're scaling the random variable, your spread should grow by the amount that you're scaling it. But by shifting it, it doesn't affect how much you disperse from the mean.

So, standard deviation is only affected by the scaling but not by the shifting here. So this is going to be ( 10 \times 0.69 ), which is going to be approximately equal to 6.9.

So this is our new distribution for our net gain, this is the mean of our net gain, and this is roughly the standard deviation of our net gain.

More Articles

View All
Lytic and lysogenic cycles | Viruses | High school biology | Khan Academy
What we’re going to do in this video is talk about two of the ways that a virus can leverage a cell to replicate the virus’s DNA. So the first is the lytic cycle, and this is what people often associate viruses doing. Let’s imagine a cell. It’s going to …
Under the Dark Skies | National Geographic
More than 130 years ago, before the advent of streetlights, we had the opportunity from the millennia before that to experience a starry night sky. It invited us inspiration and awe. [Music] When you are out under the night sky in the dark, next to your f…
Office Hours with Adora Cheung
Alright, hey everyone! Today we have Dore Chun. She’s a YC partner and co-founder of Homejoy. Thank you! How’s it going? Good, how are you? Good! Alright, we’re gonna do some office hour questions from the internet, so let’s go! Cool! So first question…
What Forces Are Acting On You?
What are the forces acting on you right now? I want to answer this question by introducing something called a free body diagram. This is a sketch that scientists make that shows all the forces acting on an object. Each force is represented by an arrow; th…
Understanding equivalent ratios
We’re told that Burger Barn makes dipping sauce by mixing two spoonfuls of honey with one half spoonful of mustard. Sandwich Town makes dipping sauce by mixing four spoonfuls of honey with one spoonful of mustard. Which dipping sauce has a stronger mustar…
How To Become The World's First Trillionaire
Everyone is looking to make a quick buck. Whether it be a group of kids running a lemonade stand or a multi-billion dollar company making new cutting-edge technology, everyone wants to be rich. To be among the ranks of Bill Gates, Warren Buffett, Mark Zuc…