yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding average rate of change of polynomials | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We are asked what is the average rate of change of the function f, and this function is f. Up here is the definition of it over the interval from negative two to three, and it's a closed interval because they put these brackets around it instead of parentheses. So that means it includes both of these boundaries. Pause this video and see if you can work through that.

All right, now let's work through it together. So there's a couple of ways that we can conceptualize the average rate of change of a function. One way to think about it is it's our change in the value of our function divided by our change in x, or it's our change in the value of our function per x on average.

So you can view this as change in the value of the function divided by your change in x. If you say that y is equal to f of x, you could also express it as change in y over change in x. On average, how much does a function change per unit change in x on average? We could do this with a table, or we could try to conceptualize it visually. Let's just do this one with a table, and then we'll try to connect the dots a little bit with the visual.

So if we have x here, and then if we have y is equal to f of x right over here, when x is equal to negative 2, what is y going to be equal to? Or what is f of negative 2? Let's see. f of negative 2, which is going to be equal to negative eight. That's negative two to the third power minus 4 times negative two, so that's minus negative eight, so that's plus eight. That equals zero.

And then when x is equal to three, I'm going to the right end of that interval. Well now y is equal to f of 3, which is equal to 27. Three to the third power minus 4 times 3 minus 12, which is equal to 15.

So what is our change in y over our change in x over this interval? Well, our y went from 0 to 15. So we have an increase of 15 in y. And what was our change in x? Well, we went from negative 2 to positive 3, so we had a plus 5 change in x. Our change in x is plus 5.

And so our average rate of change of y with respect to x, or the rate of change of our function with respect to x over the interval, is going to be equal to 3. If you wanted to think about this visually, I could try to sketch this.

So this is the x-axis, the y-axis, and our function does something like this. At x equals negative two, f of x is 0, and then it goes up, and then it comes back down, and then it does something like this.

It does something like this, and it does, and what's going before this. And so the interval that we care about, we're going from negative 2 to 3, which is right about there. So that's x equals negative 2 to x equals 3.

And so what we want to do at the left end of the interval, our function is equal to 0. So we're at this point right over here. I'll do this in a new color. We're at this point right over there, and at the right end of our function, f of 3 is 15. So we are up here someplace.

Let me connect the curve a little bit. We are going to be up there. And so when we're thinking about the average rate of change over this interval, we're really thinking about the slope of the line that connects these two points.

So the line that connects these two points looks something like this, and we're just calculating what is our change in y, which is going to be this, our change in y. We see that the value of our function increased by 15, divided by our change in x.

So this right over here is our change in x, which we see we went from negative 2 to 3. That's going to be equal to 5. So that's all we're doing when we're thinking about the average rate of change.

More Articles

View All
How McDonalds Is Taking Over The World
Every 5 hours, somewhere in the world, a new McDonald’s pops up. It’s been said that McDonald’s is one of the very few businesses that will always be profitable and recession-proof. And once you look at the stock, it seems to be true. So how did McDonald’…
My top three favourite quotes.
If you’re the smartest person in the room, you’re in the wrong room. Here’s the top three quotes that I just love to say. First one is: when you actually think that you’ve exhausted every single possibility trying to solve a problem, just remember this—…
Bonus Episode: Bicycles, Better Angels and Biden | Podcast | Overheard at National Geographic
Every four years during the third week of January, the presidential inauguration takes over downtown Washington, D.C. Okay, it’s uh Saturday afternoon about 2:30, and I’m about to ride my bike into D.C. and just do a kind of a loop around Capital Mall. It…
Start Your Watch Collection | What You Should Consider Before Purchasing
I guess we should start with Dubai Watch Week. I just watched your panel discussion, and I think a lot of people would be surprised to see high tech being matched with watchmaking. Do you think people are surprised by that? Well, I think it’s high time c…
Extraneous solutions | Equations | Algebra 2 | Khan Academy
In this video, we’re going to talk about extraneous solutions. If you’ve never heard the term before, I encourage you to review some videos on Khan Academy on extraneous solutions. But just as a bit of a refresher, it’s the idea that you do a bunch of leg…
The Science of Jetpacks and Rockets!
This is a water jet pack… but no, that’s not me flying it. This is me. It’s harder than it looks, ok? But to understand how it works, we need to first talk rocket science. Rocket science is meant to be one of the most complicated things in the world, but …