yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding average rate of change of polynomials | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We are asked what is the average rate of change of the function f, and this function is f. Up here is the definition of it over the interval from negative two to three, and it's a closed interval because they put these brackets around it instead of parentheses. So that means it includes both of these boundaries. Pause this video and see if you can work through that.

All right, now let's work through it together. So there's a couple of ways that we can conceptualize the average rate of change of a function. One way to think about it is it's our change in the value of our function divided by our change in x, or it's our change in the value of our function per x on average.

So you can view this as change in the value of the function divided by your change in x. If you say that y is equal to f of x, you could also express it as change in y over change in x. On average, how much does a function change per unit change in x on average? We could do this with a table, or we could try to conceptualize it visually. Let's just do this one with a table, and then we'll try to connect the dots a little bit with the visual.

So if we have x here, and then if we have y is equal to f of x right over here, when x is equal to negative 2, what is y going to be equal to? Or what is f of negative 2? Let's see. f of negative 2, which is going to be equal to negative eight. That's negative two to the third power minus 4 times negative two, so that's minus negative eight, so that's plus eight. That equals zero.

And then when x is equal to three, I'm going to the right end of that interval. Well now y is equal to f of 3, which is equal to 27. Three to the third power minus 4 times 3 minus 12, which is equal to 15.

So what is our change in y over our change in x over this interval? Well, our y went from 0 to 15. So we have an increase of 15 in y. And what was our change in x? Well, we went from negative 2 to positive 3, so we had a plus 5 change in x. Our change in x is plus 5.

And so our average rate of change of y with respect to x, or the rate of change of our function with respect to x over the interval, is going to be equal to 3. If you wanted to think about this visually, I could try to sketch this.

So this is the x-axis, the y-axis, and our function does something like this. At x equals negative two, f of x is 0, and then it goes up, and then it comes back down, and then it does something like this.

It does something like this, and it does, and what's going before this. And so the interval that we care about, we're going from negative 2 to 3, which is right about there. So that's x equals negative 2 to x equals 3.

And so what we want to do at the left end of the interval, our function is equal to 0. So we're at this point right over here. I'll do this in a new color. We're at this point right over there, and at the right end of our function, f of 3 is 15. So we are up here someplace.

Let me connect the curve a little bit. We are going to be up there. And so when we're thinking about the average rate of change over this interval, we're really thinking about the slope of the line that connects these two points.

So the line that connects these two points looks something like this, and we're just calculating what is our change in y, which is going to be this, our change in y. We see that the value of our function increased by 15, divided by our change in x.

So this right over here is our change in x, which we see we went from negative 2 to 3. That's going to be equal to 5. So that's all we're doing when we're thinking about the average rate of change.

More Articles

View All
How optimizing my sleep is making me limitless
You’ve heard your whole life that you should get eight hours of sleep every single night. It’s advice so common that even your grandma has probably told you that at least three times. But that advice has always annoyed me somewhat because it’s like, yeah,…
Worked example finding area under density curves | AP Statistics | Khan Academy
Consider the density curve below. This density curve doesn’t look like the ones we typically see that are a little bit curvier, but this is a little easier for us to work with and figure out areas. They ask us to find the percent of the area under the de…
A day in my life in JAPAN vlog- A productive day
Good morning. Good morning! I start my day by having my grandparents’ traditional Japanese breakfast. We always have a piece of salmon grilled and then a huge salad, rice, and a miso soup. After my breakfast, I always have a cup of coffee because I’m lite…
Integral of product of cosines
We’ve been doing several videos now to establish a bunch of truths of definite integrals of various combinations of trigonometric functions so that we will have a really strong mathematical basis for actually finding the Fourier coefficients. I think we o…
Dealing With Anger (A Stoic & Buddhist Perspective)
Of what use is anger when the same end can be arrived at by reason? Do you suppose that a hunter is angry with the beasts he kills? Seneca. Anger is an emotion that everyone experiences at some point in their lives. There are different ways in which ange…
How Should Business Schools Prepare Students for Startups? – Jeff Bussgang and Michael Seibel
Hey, this is Craig Cannon, and you’re listening to Y Combinator’s podcast. Today’s episode is a conversation about business schools and startups with Jeff Busgang, a lecturer at HBS and GP at Flybridge Capital Partners. Jeff called in to talk with YC CEO …