yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding average rate of change of polynomials | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We are asked what is the average rate of change of the function f, and this function is f. Up here is the definition of it over the interval from negative two to three, and it's a closed interval because they put these brackets around it instead of parentheses. So that means it includes both of these boundaries. Pause this video and see if you can work through that.

All right, now let's work through it together. So there's a couple of ways that we can conceptualize the average rate of change of a function. One way to think about it is it's our change in the value of our function divided by our change in x, or it's our change in the value of our function per x on average.

So you can view this as change in the value of the function divided by your change in x. If you say that y is equal to f of x, you could also express it as change in y over change in x. On average, how much does a function change per unit change in x on average? We could do this with a table, or we could try to conceptualize it visually. Let's just do this one with a table, and then we'll try to connect the dots a little bit with the visual.

So if we have x here, and then if we have y is equal to f of x right over here, when x is equal to negative 2, what is y going to be equal to? Or what is f of negative 2? Let's see. f of negative 2, which is going to be equal to negative eight. That's negative two to the third power minus 4 times negative two, so that's minus negative eight, so that's plus eight. That equals zero.

And then when x is equal to three, I'm going to the right end of that interval. Well now y is equal to f of 3, which is equal to 27. Three to the third power minus 4 times 3 minus 12, which is equal to 15.

So what is our change in y over our change in x over this interval? Well, our y went from 0 to 15. So we have an increase of 15 in y. And what was our change in x? Well, we went from negative 2 to positive 3, so we had a plus 5 change in x. Our change in x is plus 5.

And so our average rate of change of y with respect to x, or the rate of change of our function with respect to x over the interval, is going to be equal to 3. If you wanted to think about this visually, I could try to sketch this.

So this is the x-axis, the y-axis, and our function does something like this. At x equals negative two, f of x is 0, and then it goes up, and then it comes back down, and then it does something like this.

It does something like this, and it does, and what's going before this. And so the interval that we care about, we're going from negative 2 to 3, which is right about there. So that's x equals negative 2 to x equals 3.

And so what we want to do at the left end of the interval, our function is equal to 0. So we're at this point right over here. I'll do this in a new color. We're at this point right over there, and at the right end of our function, f of 3 is 15. So we are up here someplace.

Let me connect the curve a little bit. We are going to be up there. And so when we're thinking about the average rate of change over this interval, we're really thinking about the slope of the line that connects these two points.

So the line that connects these two points looks something like this, and we're just calculating what is our change in y, which is going to be this, our change in y. We see that the value of our function increased by 15, divided by our change in x.

So this right over here is our change in x, which we see we went from negative 2 to 3. That's going to be equal to 5. So that's all we're doing when we're thinking about the average rate of change.

More Articles

View All
Giant Underwater Cave Was Hiding Oldest Human Skeleton in the Americas | Expedition Raw
ALBERTO NAVA: I mean, you’re always looking for something new to discover, but we didn’t know what we were going to find when we started on that day. Most of our dives are pretty routine, you know, you just keep finding more tunnels and more tunnels. But …
Allopatric and sympatric speciation | Biology | Khan Academy
[Voiceover] In any discussion of biology or discussion of evolution, the idea of a species will come up over and over again. And we have a whole separate video on species. But the general idea, or the mainstream definition of a species, is a group of orga…
Debunking the 'Pointless' Education Myth | StarTalk
People think that when they take math in school, there’s the common response like, “I will never need to use this for the rest of my life,” as they learn trig identities or the Pythagorean theorem or whatever it is that we all remember learning, feeling p…
Education as an investment | Careers and education | Financial Literacy | Khan Academy
At a very high level, an investment is when you’re putting, let’s say, your money now into something in the hope that in the future you’re going to get more than that amount of money back. The extra amount that you get back you would call your return on y…
Creativity break: how do you get into your creative zone? | Khan Academy
[Music] I allow my brain to do the work to get into my creative zone when I have a problem to resolve. Sometimes I just sleep on it, and I let my subconscious mind work through resolving problems and solving problems. Our brains are always at work, like …
Groups Never Admit Failure
Groups never admit failure. A group would rather keep living in a mythology of “we were oppressed” than ever admit failure. Individuals are the only ones who admit failure. Even individuals don’t like to admit failure, but eventually, they can be forced t…