yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting fractions with negatives | 7th grade | Khan Academy


2m read
·Nov 10, 2024

Let's say we wanted to figure out what (3 \frac{7}{3}) minus (-\frac{7}{3}) minus (\frac{11}{3}) is. Pause this video and see if you can have a go at it before we do it together.

All right, now let's work on this together. You might be tempted to deal with the (-\frac{7}{3}) and the (\frac{11}{3}) first because they already have a common denominator. But you have to realize that with subtraction, you can't use the associative property. It's not this: ((a - b) - c) for example, which is what you would typically do first. It is not the same thing as this right over here. So you have to be very, very, very careful.

But what we could do is rewrite this. Instead of saying "subtracting something minus something else," we could rewrite it in terms of addition. What do I mean by that? Well, if I have (3 \frac{7}{3}), I'll start with that.

Subtracting something is the same thing as adding that something's opposite. So subtracting (-\frac{7}{3}) is the same thing as adding the opposite of (-\frac{7}{3}), which is just (\frac{7}{3}). And subtracting (\frac{11}{3}) is the same thing as adding the opposite of (\frac{11}{3}), which is (-\frac{11}{3}).

Now, with addition, you can use the associative property. You could add these two first or you could add these two first. I like adding these two first because they have the same denominator. So if I have (\frac{7}{3}) plus (-\frac{11}{3}), what is that going to get me?

Well, we have a common denominator. We could rewrite it like this: (3 \frac{7}{3}) plus a common denominator of three. We could write (7 + (-11)) in the numerator. So (7 + (-11)) is the same thing as (7 - 11) because subtracting something is the same thing as adding its opposite.

So, for adding (-11), the same thing as subtracting (11). So (7 + (-11))—you might want to get a number line out—but hopefully, you've gotten some practice. Now, that is going to be (-4). That is (-4).

And so now we have (3 \frac{7}{3}) plus (-\frac{4}{3}). Now we definitely need to find a common denominator. So let me rewrite this. This is equal to (3 \frac{7}{3}) plus (-\frac{4}{3}) or I could write this as even (-\frac{4}{3}). Either way.

But if we want to have a common denominator, it looks like (21) is going to be the least common multiple of (7) and (3). So let's rewrite each of these as something over (21).

From (7) to (21), we multiply by (3). So (3 \times 3 = 9). And then from (3) to (21), we multiply by (7). So if we have (-4) times (7), that is (-28).

And so this is going to be equal to (\frac{9 + (-28)}{21}), which is the same thing as (\frac{9 - 28}{21}) because subtracting a number is the same thing as adding its opposite.

And so this gets us—let's see—if (9 - 9 = 0) and then we're going to have (19) more to go below zero. So this is (-\frac{19}{21}) or we could write that as (-\frac{19}{21}) and we are done.

More Articles

View All
Your 15 Biggest Flaws YOU Can Capitalize On
If you could change one personality trait of yours, what would it be? Maybe it’s gotten you into trouble in the past; it’s left you feeling embarrassed or ashamed, and you wish it wasn’t a part of your character. We get it; okay, those flaws are frustrati…
The Benefits of Social Isolation
“There are days when solitude is heady wine that intoxicates you, others when it is a bitter tonic, and still others when it is a poison that makes you beat your head against the wall.” — Sidonie-Gabrielle Colette Imagine that you have to spend a long ti…
Why Scientists Are Puzzled By This Virus
Very recently, scientists discovered that your body is teeming with trillions of the most bizarre viruses. These viruses are not your enemies but critical to your health, protecting you from disease, maybe even killing cancer. A new frontier of science, s…
Formal and informal powers of the US president | US government and civics | Khan Academy
What we’re going to do in this video is talk about the powers of the President of the United States, and we’re going to broadly divide them into two categories. Formal powers are those that are explicitly listed in the United States Constitution, and we’…
The World's Best Investing Strategy that No One Follows
So I think that as we go through life, we get some aha moments, and it can become a source of tremendous competitive advantage. One of the things I learned about very early was the power of that. There is Monish P. He is the CEO of Dando Funds, an all-ro…
Functions of money | Financial sector | AP Macroeconomics | Khan Academy
Hello everyone, Grant here. So I’d like to talk to you today about the various functions of money. Functions of money now. Money, of course, is something that we all use every day, and we kind of have a general feel for what it is. But it’s interesting t…