yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting fractions with negatives | 7th grade | Khan Academy


2m read
·Nov 10, 2024

Let's say we wanted to figure out what (3 \frac{7}{3}) minus (-\frac{7}{3}) minus (\frac{11}{3}) is. Pause this video and see if you can have a go at it before we do it together.

All right, now let's work on this together. You might be tempted to deal with the (-\frac{7}{3}) and the (\frac{11}{3}) first because they already have a common denominator. But you have to realize that with subtraction, you can't use the associative property. It's not this: ((a - b) - c) for example, which is what you would typically do first. It is not the same thing as this right over here. So you have to be very, very, very careful.

But what we could do is rewrite this. Instead of saying "subtracting something minus something else," we could rewrite it in terms of addition. What do I mean by that? Well, if I have (3 \frac{7}{3}), I'll start with that.

Subtracting something is the same thing as adding that something's opposite. So subtracting (-\frac{7}{3}) is the same thing as adding the opposite of (-\frac{7}{3}), which is just (\frac{7}{3}). And subtracting (\frac{11}{3}) is the same thing as adding the opposite of (\frac{11}{3}), which is (-\frac{11}{3}).

Now, with addition, you can use the associative property. You could add these two first or you could add these two first. I like adding these two first because they have the same denominator. So if I have (\frac{7}{3}) plus (-\frac{11}{3}), what is that going to get me?

Well, we have a common denominator. We could rewrite it like this: (3 \frac{7}{3}) plus a common denominator of three. We could write (7 + (-11)) in the numerator. So (7 + (-11)) is the same thing as (7 - 11) because subtracting something is the same thing as adding its opposite.

So, for adding (-11), the same thing as subtracting (11). So (7 + (-11))—you might want to get a number line out—but hopefully, you've gotten some practice. Now, that is going to be (-4). That is (-4).

And so now we have (3 \frac{7}{3}) plus (-\frac{4}{3}). Now we definitely need to find a common denominator. So let me rewrite this. This is equal to (3 \frac{7}{3}) plus (-\frac{4}{3}) or I could write this as even (-\frac{4}{3}). Either way.

But if we want to have a common denominator, it looks like (21) is going to be the least common multiple of (7) and (3). So let's rewrite each of these as something over (21).

From (7) to (21), we multiply by (3). So (3 \times 3 = 9). And then from (3) to (21), we multiply by (7). So if we have (-4) times (7), that is (-28).

And so this is going to be equal to (\frac{9 + (-28)}{21}), which is the same thing as (\frac{9 - 28}{21}) because subtracting a number is the same thing as adding its opposite.

And so this gets us—let's see—if (9 - 9 = 0) and then we're going to have (19) more to go below zero. So this is (-\frac{19}{21}) or we could write that as (-\frac{19}{21}) and we are done.

More Articles

View All
How New Technology Creates New Businesses
Like the only way to find these opportunities and learn about them is to find weirdos on the internet that are also into this thing. Yes, and they’re figuring it out too, and you can kind of compare notes. Yes, and this is how new industries are created—l…
How I started my business. 📈
How did you end up in London and why London? I read originally you’re from New York. Yeah, I am from New York. I left the business for a while. I was in private equity, working with guys doing some corporate takeovers. And then I decided to get back into…
Why Warren Buffett Avoids Short Selling
So you might think it’s easier to make money on short selling, and all I can say is, uh, it hasn’t been for me. I don’t think it’s been for Charlie. It is a very, very tough business. It’s an interesting item to study because, I mean, it’s ruined a lot of…
Analyzing functions for discontinuities (discontinuity example) | AP Calculus AB | Khan Academy
So we’ve got this function ( f(x) ) that is piecewise continuous. It’s defined over several intervals. Here for ( 0 < x \leq 2 ), ( f(x) ) is ( \ln(x) ). For any ( x > 2 ), well then ( f(x) ) is going to be ( x^2 \cdot \ln(x) ). What we want to do …
#shorts
Here’s a day in the life of a private jet broker. I arrived at the office at 7:00 a.m. to respond to some important emails from Hong Kong and Dubai, ensuring they were received within their working hours. Being on time builds trust and keeps things runni…
2015 AP Calculus AB/BC 3cd | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Bob is writing his bicycle along the same path for ( 0 \leq t \leq 10 ). Bob’s velocity is modeled by ( b(t) = t^3 - 6t^2 + 300 ) where ( t ) is measured in minutes and ( b(t) ) is measured in meters per minute. Find Bob’s acceleration at time ( t = 5 ). …