yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting fractions with negatives | 7th grade | Khan Academy


2m read
·Nov 10, 2024

Let's say we wanted to figure out what (3 \frac{7}{3}) minus (-\frac{7}{3}) minus (\frac{11}{3}) is. Pause this video and see if you can have a go at it before we do it together.

All right, now let's work on this together. You might be tempted to deal with the (-\frac{7}{3}) and the (\frac{11}{3}) first because they already have a common denominator. But you have to realize that with subtraction, you can't use the associative property. It's not this: ((a - b) - c) for example, which is what you would typically do first. It is not the same thing as this right over here. So you have to be very, very, very careful.

But what we could do is rewrite this. Instead of saying "subtracting something minus something else," we could rewrite it in terms of addition. What do I mean by that? Well, if I have (3 \frac{7}{3}), I'll start with that.

Subtracting something is the same thing as adding that something's opposite. So subtracting (-\frac{7}{3}) is the same thing as adding the opposite of (-\frac{7}{3}), which is just (\frac{7}{3}). And subtracting (\frac{11}{3}) is the same thing as adding the opposite of (\frac{11}{3}), which is (-\frac{11}{3}).

Now, with addition, you can use the associative property. You could add these two first or you could add these two first. I like adding these two first because they have the same denominator. So if I have (\frac{7}{3}) plus (-\frac{11}{3}), what is that going to get me?

Well, we have a common denominator. We could rewrite it like this: (3 \frac{7}{3}) plus a common denominator of three. We could write (7 + (-11)) in the numerator. So (7 + (-11)) is the same thing as (7 - 11) because subtracting something is the same thing as adding its opposite.

So, for adding (-11), the same thing as subtracting (11). So (7 + (-11))—you might want to get a number line out—but hopefully, you've gotten some practice. Now, that is going to be (-4). That is (-4).

And so now we have (3 \frac{7}{3}) plus (-\frac{4}{3}). Now we definitely need to find a common denominator. So let me rewrite this. This is equal to (3 \frac{7}{3}) plus (-\frac{4}{3}) or I could write this as even (-\frac{4}{3}). Either way.

But if we want to have a common denominator, it looks like (21) is going to be the least common multiple of (7) and (3). So let's rewrite each of these as something over (21).

From (7) to (21), we multiply by (3). So (3 \times 3 = 9). And then from (3) to (21), we multiply by (7). So if we have (-4) times (7), that is (-28).

And so this is going to be equal to (\frac{9 + (-28)}{21}), which is the same thing as (\frac{9 - 28}{21}) because subtracting a number is the same thing as adding its opposite.

And so this gets us—let's see—if (9 - 9 = 0) and then we're going to have (19) more to go below zero. So this is (-\frac{19}{21}) or we could write that as (-\frac{19}{21}) and we are done.

More Articles

View All
Food Too "Ugly" to Sell Becomes a Feast for 5,000 People | National Geographic
Feeding the 5,000 is a celebration of the solutions to food waste, where we feed 5,000 people a delicious meal made entirely out of food that would otherwise have gone to waste. America is a country which has a massive problem of food waste. Forty percent…
Fraction decimal and percent from visual model
So let’s assume that this entire square represents a hole, and we can see that part of it is shaded in blue. What we’re going to do in this video is try to represent the part that is shaded in blue as a fraction, as a decimal, and as a percent. So pause …
Which Hits The Ground First?
Now I’d like you to make a prediction. In my left hand, I have a basketball; in my right hand, a 5 kg medicine ball. If I hold them both above my head and then let them go simultaneously, which one will hit the ground first? Six years ago here at the Uni…
Hovering a Helicopter is Hilariously Hard - Smarter Every Day 145
Hey, it’s me Destin, welcome back to Smarter Every Day. If there is one thing that I learnt from the backwards bicycle experiment, it is that knowledge is not understanding. So a couple of years ago when I made the YouTube series about helicopter physics,…
Area between a curve and and the _-axis | AP Calculus AB | Khan Academy
So right over here I have the graph of the function y is equal to 15 / x, or at least I see the part of it for positive values of X. What I’m curious about in this video is I want to find the area not between this curve and the positive x-axis. I want to …
Life of Muhammad and beginnings of Islam part 1 | World History | Khan Academy
Now going to give an overview on the beginnings of Islam. Regardless of whether you are part of an Islamic culture, you are a practicing Muslim, or you believe in the Islamic Traditions, it’s valuable to learn about the beginnings of Islam because today n…