yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting fractions with negatives | 7th grade | Khan Academy


2m read
·Nov 10, 2024

Let's say we wanted to figure out what (3 \frac{7}{3}) minus (-\frac{7}{3}) minus (\frac{11}{3}) is. Pause this video and see if you can have a go at it before we do it together.

All right, now let's work on this together. You might be tempted to deal with the (-\frac{7}{3}) and the (\frac{11}{3}) first because they already have a common denominator. But you have to realize that with subtraction, you can't use the associative property. It's not this: ((a - b) - c) for example, which is what you would typically do first. It is not the same thing as this right over here. So you have to be very, very, very careful.

But what we could do is rewrite this. Instead of saying "subtracting something minus something else," we could rewrite it in terms of addition. What do I mean by that? Well, if I have (3 \frac{7}{3}), I'll start with that.

Subtracting something is the same thing as adding that something's opposite. So subtracting (-\frac{7}{3}) is the same thing as adding the opposite of (-\frac{7}{3}), which is just (\frac{7}{3}). And subtracting (\frac{11}{3}) is the same thing as adding the opposite of (\frac{11}{3}), which is (-\frac{11}{3}).

Now, with addition, you can use the associative property. You could add these two first or you could add these two first. I like adding these two first because they have the same denominator. So if I have (\frac{7}{3}) plus (-\frac{11}{3}), what is that going to get me?

Well, we have a common denominator. We could rewrite it like this: (3 \frac{7}{3}) plus a common denominator of three. We could write (7 + (-11)) in the numerator. So (7 + (-11)) is the same thing as (7 - 11) because subtracting something is the same thing as adding its opposite.

So, for adding (-11), the same thing as subtracting (11). So (7 + (-11))—you might want to get a number line out—but hopefully, you've gotten some practice. Now, that is going to be (-4). That is (-4).

And so now we have (3 \frac{7}{3}) plus (-\frac{4}{3}). Now we definitely need to find a common denominator. So let me rewrite this. This is equal to (3 \frac{7}{3}) plus (-\frac{4}{3}) or I could write this as even (-\frac{4}{3}). Either way.

But if we want to have a common denominator, it looks like (21) is going to be the least common multiple of (7) and (3). So let's rewrite each of these as something over (21).

From (7) to (21), we multiply by (3). So (3 \times 3 = 9). And then from (3) to (21), we multiply by (7). So if we have (-4) times (7), that is (-28).

And so this is going to be equal to (\frac{9 + (-28)}{21}), which is the same thing as (\frac{9 - 28}{21}) because subtracting a number is the same thing as adding its opposite.

And so this gets us—let's see—if (9 - 9 = 0) and then we're going to have (19) more to go below zero. So this is (-\frac{19}{21}) or we could write that as (-\frac{19}{21}) and we are done.

More Articles

View All
Fishing Tips: How to Find a Hot Spot | Wicked Tuna: Outer Banks
[Music] Hi, I’m Captain Tammy Gray with a Real Action, and I’m going to give you some tips today about the Marine wildlife and what to look for when you’re out here blue fin tuna fishing in the Atlantic Ocean. You want to get onto the blue fin; you want…
Khan Academy Best Practices for Social Studies
Hi everyone, this is Jeremy Schieffen at Khan Academy. Thanks so much for joining us this afternoon or this evening. We’re thrilled to have you online with Aaron Hill, an awesome social studies educator, AP expert, and general Khan Academy guru. Um, as y…
Sun 101 | National Geographic
While billions of stars are scattered throughout the universe, the one at the center of our solar system plays a special role for us here on Earth. Our Sun formed about 4.5 billion years ago in the Milky Way galaxy’s Orion’s fur. It was born when a cloud …
Fishing Tips: How to Handline | Wicked Tuna: Outer Banks
[Applause] [Music] [Applause] Hand lining is what we used to do years ago, 30 years ago, before Tyler was born, before all these guys were even on a boat fishing. We used to do handlines; now they do rod and rails. They just crank. It’s very important wh…
Derivative as slope of curve | Derivatives introduction | AP Calculus AB | Khan Academy
What I want to do in this video is a few examples that test our intuition of the derivative as a rate of change or the steepness of a curve, or the slope of a curve, or the slope of a tangent line of a curve, depending on how you actually want to think ab…
The Communities of the Okavango Delta | National Geographic
My name is Tumeletso Setlabosha. But people call me… Water. I live in the center of the Okavango Delta. It’s wonderful. As a young man, I was a tracker, helping people to hunt wildlife. Elephant footprint. It came from this way. Five Zebras! But now I use…