yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting fractions with negatives | 7th grade | Khan Academy


2m read
·Nov 10, 2024

Let's say we wanted to figure out what (3 \frac{7}{3}) minus (-\frac{7}{3}) minus (\frac{11}{3}) is. Pause this video and see if you can have a go at it before we do it together.

All right, now let's work on this together. You might be tempted to deal with the (-\frac{7}{3}) and the (\frac{11}{3}) first because they already have a common denominator. But you have to realize that with subtraction, you can't use the associative property. It's not this: ((a - b) - c) for example, which is what you would typically do first. It is not the same thing as this right over here. So you have to be very, very, very careful.

But what we could do is rewrite this. Instead of saying "subtracting something minus something else," we could rewrite it in terms of addition. What do I mean by that? Well, if I have (3 \frac{7}{3}), I'll start with that.

Subtracting something is the same thing as adding that something's opposite. So subtracting (-\frac{7}{3}) is the same thing as adding the opposite of (-\frac{7}{3}), which is just (\frac{7}{3}). And subtracting (\frac{11}{3}) is the same thing as adding the opposite of (\frac{11}{3}), which is (-\frac{11}{3}).

Now, with addition, you can use the associative property. You could add these two first or you could add these two first. I like adding these two first because they have the same denominator. So if I have (\frac{7}{3}) plus (-\frac{11}{3}), what is that going to get me?

Well, we have a common denominator. We could rewrite it like this: (3 \frac{7}{3}) plus a common denominator of three. We could write (7 + (-11)) in the numerator. So (7 + (-11)) is the same thing as (7 - 11) because subtracting something is the same thing as adding its opposite.

So, for adding (-11), the same thing as subtracting (11). So (7 + (-11))—you might want to get a number line out—but hopefully, you've gotten some practice. Now, that is going to be (-4). That is (-4).

And so now we have (3 \frac{7}{3}) plus (-\frac{4}{3}). Now we definitely need to find a common denominator. So let me rewrite this. This is equal to (3 \frac{7}{3}) plus (-\frac{4}{3}) or I could write this as even (-\frac{4}{3}). Either way.

But if we want to have a common denominator, it looks like (21) is going to be the least common multiple of (7) and (3). So let's rewrite each of these as something over (21).

From (7) to (21), we multiply by (3). So (3 \times 3 = 9). And then from (3) to (21), we multiply by (7). So if we have (-4) times (7), that is (-28).

And so this is going to be equal to (\frac{9 + (-28)}{21}), which is the same thing as (\frac{9 - 28}{21}) because subtracting a number is the same thing as adding its opposite.

And so this gets us—let's see—if (9 - 9 = 0) and then we're going to have (19) more to go below zero. So this is (-\frac{19}{21}) or we could write that as (-\frac{19}{21}) and we are done.

More Articles

View All
The ONE thing most Millionaires do that makes them Millionaires
What’s up, you guys? It’s Graham here. So, this is something that so many people seem to miss entirely or just don’t fully understand. This is also something that the most financially successful people all seem to do on autopilot without ever even thinkin…
15 Small Things That Make People Instantly Like You
In a world where social interactions are the stepping stones to a successful life, charisma is the biggest unfair advantage that you can train in yourself. Even better, there are tiny secrets that you can deploy to give yourself an edge in life. By the en…
Diode graphical solution
Now I want to use a diode in a circuit and we’ll see how we, uh, solve circuits that include these nonlinear diodes in them. So I have a circuit here with a battery and a resistor and a diode here, and it’s going to be a special kind; it’s going to be an …
2d curl formula
So after introducing the idea of fluid rotation in a vector field like this, let’s start tightening up our grasp on this intuition to get something that we can actually apply formulas to. A vector field like the one that I had there, that’s two-dimension…
Ray Dalio & Deepak Chopra on Life and Death
[Music] I’m Deepak Chopra, and I trained as an internist, medical doctor, endocrinologist, and neuroendocrinologist. My current journey is exploring consciousness and what we call reality. If you don’t know who Ray Dalio is, then you’re probably asleep. …
Khanmigo essay feedback demo | Introducing Khanmigo | Khanmigo for students | Khan Academy
Hey, this is Sarah from KH Academy, and I’m going to show you how to use our “Give Feedback on My Academic Essay” activity from Kigo. Like all other Kigo activities, you can get here from your AI activities page under the right section of the menu. When …