yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying corresponding parts of scaled copies | Geometry | 7th grade | Khan Academy


2m read
·Nov 11, 2024

We are told that figure two is a scaled copy of figure one, and we can verify that by comparing corresponding sides. Corresponding sides are sides that have the same relative position; they're playing the same role in each of the diagrams, even if the diagrams are scaled versions of each other, even if they are different sizes.

So, for example, if we were to compare segment EA right over here, it looks like it corresponds to segment OP. The length of EA is three, while the length of OP is one, two, three, four, five, six. For this to be a scaled copy, the scaling factor from the corresponding side in figure one to the corresponding side in figure two should be a factor of 2. So it’s times 2 right over there.

But let's just answer the questions that they're asking us, and then we can also verify that it is a scaled copy. What point on figure one corresponds to point Q on figure two? All right, pause this video and see if you can figure that out.

All right, so point Q on figure two is right over there. So what point on figure one corresponds to that? Well, it would be playing the same role; it would be in the same relative position. It looks like this point right over here, point B, is in that same relative position. So point B corresponds to point Q on figure two.

Identify the side of figure two that corresponds to segment DC in figure one. Pause this video again and see if you can figure that out.

All right, so segment DC in figure one is that right over there. Your eye might immediately catch that, hey, the segment that's playing the same role in figure two is this one right over here. That is segment NM; put the line over it to make sure that I'm specifying the segment.

We can once again verify the scale factor to ensure that this is a scaled copy. For these two to correspond to each other and for these to be scaled copies of each other, DC has a length of one, two, three, four, and NM has a length of one, two, three, four, five, six, seven, eight. So once again, we are verifying that our scale factor is two.

More Articles

View All
What If The World is Actually a Prison? | The Philosophy of Arthur Schopenhauer
What if this world is actually one giant prison? When the 19th-century philosopher Arthur Schopenhauer observed the amount of pain that we experience during our lifetimes, he concluded that it’s not happiness and pleasure we’re after, but a reduction of t…
Simple Products That Became Big Companies – Dalton Caldwell and Michael Seibel
A product that doesn’t work with lots of features is infinitely worse than a product with one feature that works. And again, like, let’s play that out. Let’s play that out. Right? Imagine if it’s like they were like, you get health care and you get benef…
Want to Get SUPER Rich? Sacrifice These 17.
When you see millionaires and billionaires in the world’s wealthiest people, you have to be 100% sure that they reached this financial status as a result of sacrifices. Every one of them gave up a lot to get to where they are today. Sacrifice is what sets…
International Space Station Tour on Earth (1g) - Smarter Every Day 141
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I want to be an astronaut, so I love taking tours of the International Space Station online. But there’s a problem. Every time I do this, I can’t get my bearings. It’s like, without gravity, my main…
Photo Ark | Series Trailer
[Music] All right, this’ll work. Okay, we’re ready for the cobra. [Music] He’s running away from me. There we go, that’s just the first one. I’m all worn out. Okay, for the past 15 years, I’ve made a thousand trips to photograph over 10,000 species and s…
Partial derivatives, introduction
So let’s say I have some multivariable function like f of XY. So it’ll have a two variable input is equal to I don’t know x^2 * y plus s of y, so it’ll output just a single number. It’s a scalar valued function. Question is, how do we take the derivative…