yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying corresponding parts of scaled copies | Geometry | 7th grade | Khan Academy


2m read
·Nov 11, 2024

We are told that figure two is a scaled copy of figure one, and we can verify that by comparing corresponding sides. Corresponding sides are sides that have the same relative position; they're playing the same role in each of the diagrams, even if the diagrams are scaled versions of each other, even if they are different sizes.

So, for example, if we were to compare segment EA right over here, it looks like it corresponds to segment OP. The length of EA is three, while the length of OP is one, two, three, four, five, six. For this to be a scaled copy, the scaling factor from the corresponding side in figure one to the corresponding side in figure two should be a factor of 2. So it’s times 2 right over there.

But let's just answer the questions that they're asking us, and then we can also verify that it is a scaled copy. What point on figure one corresponds to point Q on figure two? All right, pause this video and see if you can figure that out.

All right, so point Q on figure two is right over there. So what point on figure one corresponds to that? Well, it would be playing the same role; it would be in the same relative position. It looks like this point right over here, point B, is in that same relative position. So point B corresponds to point Q on figure two.

Identify the side of figure two that corresponds to segment DC in figure one. Pause this video again and see if you can figure that out.

All right, so segment DC in figure one is that right over there. Your eye might immediately catch that, hey, the segment that's playing the same role in figure two is this one right over here. That is segment NM; put the line over it to make sure that I'm specifying the segment.

We can once again verify the scale factor to ensure that this is a scaled copy. For these two to correspond to each other and for these to be scaled copies of each other, DC has a length of one, two, three, four, and NM has a length of one, two, three, four, five, six, seven, eight. So once again, we are verifying that our scale factor is two.

More Articles

View All
Opportunities for high school and college tutors
Hi everyone, Sal Khan here from Khan Academy. Many of you all know about another project, another not-for-profit that I’ve been involved with known as schoolhouse.world, which is all about giving folks free tutoring. We do that by finding amazing voluntee…
Making a Live Trap | Live Free or Die
Thorne’s girlfriend Delia’s counting on him to make sure they stay stocked up on meat, but he’s new to trapping and still doesn’t have a handle on the habits of all the wildlife in the area. “Now I’m gonna actually make a live trap. It’s kind of like a p…
5 Things You Need to Know About Death | Explorer
In the United States, we are so far removed from that. We really are a death-denying culture; it’s just not something we think about. It’s not something we take seriously. I think the role of the funeral director many times is to take folks who have never…
The Bill of Rights: an introduction | US government and civics | Khan Academy
The Bill of Rights, as we know it today, were the first 10 amendments to the Constitution. These amendments guaranteed individual liberty to make sure that citizens had a stated expectation for what the government could or could not do to them. You can ki…
50 Founders Share How They Got Their First Customers
Did you find your first customer surprisingly? “A cold email? That’s a good question. A lot of calls and emailing on Reddit, actually. We don’t have them yet; we are currently looking.” [Music] “The first one was actually just kind of very crafted cold…
Why Chasing Happiness is Pointless (The Hedonic Treadmill)
Centuries ago, Siddhartha Gautama was born a prince, with a prophecy declaring that he would become either a great king or a spiritual leader. His father didn’t like the idea of his son walking the spiritual path; he wanted him to become a powerful ruler,…