yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying corresponding parts of scaled copies | Geometry | 7th grade | Khan Academy


2m read
·Nov 11, 2024

We are told that figure two is a scaled copy of figure one, and we can verify that by comparing corresponding sides. Corresponding sides are sides that have the same relative position; they're playing the same role in each of the diagrams, even if the diagrams are scaled versions of each other, even if they are different sizes.

So, for example, if we were to compare segment EA right over here, it looks like it corresponds to segment OP. The length of EA is three, while the length of OP is one, two, three, four, five, six. For this to be a scaled copy, the scaling factor from the corresponding side in figure one to the corresponding side in figure two should be a factor of 2. So it’s times 2 right over there.

But let's just answer the questions that they're asking us, and then we can also verify that it is a scaled copy. What point on figure one corresponds to point Q on figure two? All right, pause this video and see if you can figure that out.

All right, so point Q on figure two is right over there. So what point on figure one corresponds to that? Well, it would be playing the same role; it would be in the same relative position. It looks like this point right over here, point B, is in that same relative position. So point B corresponds to point Q on figure two.

Identify the side of figure two that corresponds to segment DC in figure one. Pause this video again and see if you can figure that out.

All right, so segment DC in figure one is that right over there. Your eye might immediately catch that, hey, the segment that's playing the same role in figure two is this one right over here. That is segment NM; put the line over it to make sure that I'm specifying the segment.

We can once again verify the scale factor to ensure that this is a scaled copy. For these two to correspond to each other and for these to be scaled copies of each other, DC has a length of one, two, three, four, and NM has a length of one, two, three, four, five, six, seven, eight. So once again, we are verifying that our scale factor is two.

More Articles

View All
Candle Trick
Tonight we’re going to show you a candle trick that you can use to impress your date at your next candlelit dinner. What we’re going to show you is how you can light a candle without touching the wick. Okay, so Nigel is going to, uh, light up a wooden sp…
The Hindu Interpretation of Creation | The Story of God
In the beginning, Hindus believed Ganga flowed in the heavens, but she was held captive by the creator god Brahma. Then Brahma decided to send the river Ganga down to Earth, but there is one problem: Ganga has got such mighty floods, and if she comes on E…
When Life Hurts, Care Less About It | The Philosophy of Marcus Aurelius
Once the most powerful man in the known world, Marcus Aurelius attempted to live virtuously, following Stoic principles. Unlike many Roman Emperors, he did not indulge in the many pleasures he had access to, like getting drunk on wine and watching sadisti…
Incident | Vocabulary | Khan Academy
Hey wordsmiths! Let me introduce you to a spectacular new word. It’s—oh, oh dear! There’s been an incident. Uh, this Manatee has taken several bites out of the word spectacular. Well fine, uh, we are nothing if not flexible here at Khan Academy. So let us…
Tigers 101 | National Geographic
With their signature orange fur and black stripes, tigers have become icons of beauty, power, and the importance of conservation. Tigers have evolved into six subspecies. The tiger’s tale of evolution can be traced back to about two million years ago when…
15 Expensive Things That Are Worth The Money
Remember the banana duct tape to a wall that sold for 120,000? Yeah, okay, not everything that’s expensive is worth the money, but some things are. When you finally get rich, you’ll want to know where you should focus your spending. So here are 15 expensi…