yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Potential energy | Energy | Middle school physics | Khan Academy


3m read
·Nov 10, 2024

Hello everyone! Let's talk about potential energy.

Potential energy is energy that is stored in an object, and this energy is related to the potential or the future possibility for an object to have a different type of energy, like kinetic energy from motion that is converted from that potential energy. There are many kinds of potential energy, but they all arise from an object's relation to a position or an original shape.

So while in general there are many different types of potential energy, there are several specific types that are very common. So let's talk about these.

Gravitational potential energy is the potential energy that an object with mass has due to the force of gravity from another object with mass, like say the Earth. In fact, we often use the surface of the Earth to compare an object's position with to see how much potential energy it has in the Earth's gravitational field.

Gravity is an attractive force, so objects with mass want to move towards the surface of the Earth. If we move them further away or opposite the direction of the gravitational force, we increase their gravitational potential energy. The opposite is true if it gets closer.

When an object is on the surface of Earth, we typically say it has no potential energy, but you could use any point to be this comparison where potential energy is zero. Consider a book on a bookshelf. If the book is on this shelf, we can use this shelf as the 0 potential energy. Moving it to a higher shelf would mean it has gravitational potential energy relative to that lower shelf or relative to the floor if we want to use that as our comparison instead.

Next, we have elastic potential energy, which is the potential energy some objects have due to their shape being changed. These types of objects are called elastic objects. Elastic objects are made of materials and designed so they have internal or inside forces that try to return them to their original shape. One very common example of this is a spring. When you stretch or compress a spring, you change its shape, and the shape of the spring causes internal forces that try to return the spring to its original shape.

Now electric potential energy, which is the potential energy a charged object has due to the electric force from another charged object. Opposite electric charges are attracted to one another, and similar electric charges are repelled. So the potential energy depends on what type of charges there are and how far apart they are. Potential energy increases when the charges move opposite the direction of the electric force. For example, when two negative charges get closer together.

Similarly, magnetic potential energy is the potential energy a magnetic object has due to the magnetic force from another magnet. Magnetic force causes similar poles to repel one another and opposite poles to attract. Because magnets have north and south poles, the potential energy depends not only on the position within a field but also the magnet's orientation. Again, you could increase the potential energy by moving the magnets opposite the direction of the magnetic force. For example, by pulling apart a north pole and a south pole.

All of these types of energy are due to different forces and are calculated differently from different equations, which we won't cover here, but they are all potential energy. These are just a few of the most common types of potential energy, but there are more.

In summary, potential energy is the stored energy in an object due to its position, its properties, and the forces acting on it. Potential energy is measured relative to some comparison position or shape and describes the potential for other forms of energy, commonly kinetic energy from motion, to exist. There are many forms of potential energy, including gravitational, elastic, magnetic, and electric.

Thanks for watching, and I hope you learned a little bit of something!

More Articles

View All
15 Philosophies That Will Change Your Life
A single sentence could change your life. These philosophies are meant to shake you out of complacency. They’re meant to bring you back down to earth to make you aware of your presence in the world. When it hits home, it’ll give you the inspiration to get…
Warren Buffett: Read These 10 Books if You Want to be Rich
I read every book in the Omaha Public Library in business by the time I was 11. We moved back here, and as soon as I got back here and my dad was in Congress, I said, “Get everything in the Library of Congress. I want to read it!” But I still spend five o…
The Key To A Long-term Relationship
How do you know when you meet your perfect partner that you think is going to be with you for life? Maybe you get married, maybe you don’t. But my point is, why are they the right one for you? You have to think long term. Are they your partner because th…
First-order reactions | Kinetics | AP Chemistry | Khan Academy
Let’s say we have a hypothetical reaction where reactant A turns into products, and that the reaction is first order with respect to A. If the reaction is first order with respect to reactant A, for the rate law we can write that the rate of the reaction …
Kirchhoff's voltage law | Circuit analysis | Electrical engineering | Khan Academy
Now we’re ready to start hooking up our components into circuits, and one of the two things that are going to be very useful to us are Kof’s laws. In this video, we’re going to talk about Kof’s voltage law. If we look at this circuit here, this is a volt…
Can You Picture That? This Photographer Can and Does | Podcast | Overheard at National Geographic
Foreign [Music] November 2nd, and I am getting into my Tyvek suit. So, because bats carry diseases that we don’t know about, we have to wear PPE. And we all know about PPE because of COVID. So that’s Mark Thiessen. He’s a staff photographer for National G…