yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Potential energy | Energy | Middle school physics | Khan Academy


3m read
·Nov 10, 2024

Hello everyone! Let's talk about potential energy.

Potential energy is energy that is stored in an object, and this energy is related to the potential or the future possibility for an object to have a different type of energy, like kinetic energy from motion that is converted from that potential energy. There are many kinds of potential energy, but they all arise from an object's relation to a position or an original shape.

So while in general there are many different types of potential energy, there are several specific types that are very common. So let's talk about these.

Gravitational potential energy is the potential energy that an object with mass has due to the force of gravity from another object with mass, like say the Earth. In fact, we often use the surface of the Earth to compare an object's position with to see how much potential energy it has in the Earth's gravitational field.

Gravity is an attractive force, so objects with mass want to move towards the surface of the Earth. If we move them further away or opposite the direction of the gravitational force, we increase their gravitational potential energy. The opposite is true if it gets closer.

When an object is on the surface of Earth, we typically say it has no potential energy, but you could use any point to be this comparison where potential energy is zero. Consider a book on a bookshelf. If the book is on this shelf, we can use this shelf as the 0 potential energy. Moving it to a higher shelf would mean it has gravitational potential energy relative to that lower shelf or relative to the floor if we want to use that as our comparison instead.

Next, we have elastic potential energy, which is the potential energy some objects have due to their shape being changed. These types of objects are called elastic objects. Elastic objects are made of materials and designed so they have internal or inside forces that try to return them to their original shape. One very common example of this is a spring. When you stretch or compress a spring, you change its shape, and the shape of the spring causes internal forces that try to return the spring to its original shape.

Now electric potential energy, which is the potential energy a charged object has due to the electric force from another charged object. Opposite electric charges are attracted to one another, and similar electric charges are repelled. So the potential energy depends on what type of charges there are and how far apart they are. Potential energy increases when the charges move opposite the direction of the electric force. For example, when two negative charges get closer together.

Similarly, magnetic potential energy is the potential energy a magnetic object has due to the magnetic force from another magnet. Magnetic force causes similar poles to repel one another and opposite poles to attract. Because magnets have north and south poles, the potential energy depends not only on the position within a field but also the magnet's orientation. Again, you could increase the potential energy by moving the magnets opposite the direction of the magnetic force. For example, by pulling apart a north pole and a south pole.

All of these types of energy are due to different forces and are calculated differently from different equations, which we won't cover here, but they are all potential energy. These are just a few of the most common types of potential energy, but there are more.

In summary, potential energy is the stored energy in an object due to its position, its properties, and the forces acting on it. Potential energy is measured relative to some comparison position or shape and describes the potential for other forms of energy, commonly kinetic energy from motion, to exist. There are many forms of potential energy, including gravitational, elastic, magnetic, and electric.

Thanks for watching, and I hope you learned a little bit of something!

More Articles

View All
Amelia Earhart Part I: The Lady Vanishes | Podcast | Overheard at National Geographic
The pilot, winging his way above the earth at 200 miles an hour, talks by radio telephone to ground stations and to other planes in the air. He sits behind engines, the reliability of which, measured by yardsticks of the past, is all but unbelievable. I m…
See How Ancient Past and Present Meet in This Coastal Town | National Geographic
(soft music) [Gabriel] This is Huanchaco. This is my hometown. Huanchaco is a small fishing village that is north of the city of Trujillo, and it’s a very rich place in archaeological sites. There has been a continuous occupation in this area for more th…
Princess Diana's Funeral | Being The Queen
[music playing] On the eve of Princess Diana’s funeral, the royal family is returning to London, hoping perhaps to quell some of the criticism of their actions since Diana’s death. REPORTER: The queen’s convoy arrived in London. As it swept up to Bucking…
Median, mean and skew from density curves | AP Statistics | Khan Academy
In other videos, we introduce ourselves to the idea of a density curve, which is a summary of a distribution—a distribution of data. In the future, we’ll also look at things like probability density. But what I want to talk about in this video is to thin…
How To Retire In 10 Years (Starting With $0)
What’s up, Graham? It’s guys here. So, this is a really interesting topic: how to retire in 10 years starting with zero dollars. This is something where, at the core, the concept is incredibly simple. In fact, it’s so basic that I could probably summarize…
One Good Tuna Deserves Another | Wicked Tuna
Get this guy over there! It’s pitch black. We got our anchor line out and so to a bunch of other boats around us. We got to make sure that our fish doesn’t come in contact with any of the other anchor lines in the water or it will be a huge paycheck. This…