yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating composite functions: using graphs | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • So we have the graphs of two functions here. We have the graph (y) equals (f(x)) and we have the graph (y) is equal to (g(x)). And what I wanna do in this video is evaluate what (g(f(...)). Let me do the (f(...)) in another color. (f(-5)) is... (f(-5)) is...

And it can sometimes seem a little daunting when you see these composite functions. You're evaluating the function (g) at (f(-5)). What does all this mean? We just have to remind ourselves what functions are all about. They take an input and they give you an output.

So really, what we're doing is we're going to take... we have the function (f). We have the function (f). We're going to input (-5) into that function. We're going to input (-5) into that function and it's going to output (f(-5)). It's going to output (f(-5)) and we can figure what that is.

And then that's going to be the input into the function (g). So that's going to be the input into the function (g) and so we're going to... and then the output is going to be (g(f(-5))), (g(f(-5))). Let's just do it step by step.

So the first thing we wanna figure out is what is the function (f) when (x = -5)? What is (f(-5))? Well, we just have to see when (x) is equal to (-5). When (x) is equal to (-5), the function is right over here. Let's see, let me see if I can draw a straight line.

So then (x = -5). The function is right over here. It looks like (f(-5) = -2). It's equal to (-2). You see that right over there. So, (f(-5) = -2).

And so we can now think of this. Instead of saying (g(f(-5))), we could say well (f(-5)) is just (-2), is just (-2). So this is going to be equivalent to (g(-2)), (g(-2)), (g(-2)).

We're gonna take (-2) into (g) and we're gonna output (g(-2)). So we're taking that output, (-2), and we're inputting it into (g). So when (x = -2), when (x = -2), what is (g)?

So we see, when (x = -2), (g)... the graph is right over there, (g(-2) = 1). So this is going to be (1).

So (g(f(-5))) sounds really complicated; we were able to figure out is (1) 'cause you input (-5) into (f), it outputs (-2). And then you input (-2) into (g), it outputs (1) and we're all done.

More Articles

View All
Howard Marks: A Storm is Brewing in the Stock Market (The "AI Bubble")
Every bubble ensues from widespread conviction. People are now convinced AI will change the world. I imagine it will, but you know, if you go back 25 years ago, exactly to, uh, to mid-1999, everybody was sure that the internet would change the world. And …
15 Signs You Get Played By Others
Do you feel like you’re always the third wheel? The one who is easily taken advantage of, or the one whose opinions don’t matter? Well, in this video, we’ll explore why you always get played and what you can do to change that. From lacking presence and fa…
I taught some students, and they taught me!
Today some students visited me to learn about what it takes to sell private jets. But I was left pleasantly surprised with what they actually ended up teaching me. I paused my workday and greeted them in the fuselage. We sat down and let me tell you, they…
Second partial derivative test example, part 2
In the last video, we were given a multivariable function and asked to find and classify all of its critical points. So, critical points just mean finding where the gradient is equal to zero, and we found four different points for that. I have them down h…
Graphical limit example
We are asked what is a reasonable estimate for the limit of g of x as x approaches 3. So, what we have here in blue, this is the graph of y is equal to g of x, and we want to think about what is the limit as x approaches 3. So, this is x equals 3 here. S…
Why I’m Selling Bitcoin
What’s up Wales? It’s Megalodon here, and I have no idea why you wanted me to say that as an intro, but there you go. And now we’re about to take a bit of a twist because I’m selling some Bitcoin. It’s been an absolutely crazy ride, hitting a high of alm…