yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating composite functions: using graphs | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • So we have the graphs of two functions here. We have the graph (y) equals (f(x)) and we have the graph (y) is equal to (g(x)). And what I wanna do in this video is evaluate what (g(f(...)). Let me do the (f(...)) in another color. (f(-5)) is... (f(-5)) is...

And it can sometimes seem a little daunting when you see these composite functions. You're evaluating the function (g) at (f(-5)). What does all this mean? We just have to remind ourselves what functions are all about. They take an input and they give you an output.

So really, what we're doing is we're going to take... we have the function (f). We have the function (f). We're going to input (-5) into that function. We're going to input (-5) into that function and it's going to output (f(-5)). It's going to output (f(-5)) and we can figure what that is.

And then that's going to be the input into the function (g). So that's going to be the input into the function (g) and so we're going to... and then the output is going to be (g(f(-5))), (g(f(-5))). Let's just do it step by step.

So the first thing we wanna figure out is what is the function (f) when (x = -5)? What is (f(-5))? Well, we just have to see when (x) is equal to (-5). When (x) is equal to (-5), the function is right over here. Let's see, let me see if I can draw a straight line.

So then (x = -5). The function is right over here. It looks like (f(-5) = -2). It's equal to (-2). You see that right over there. So, (f(-5) = -2).

And so we can now think of this. Instead of saying (g(f(-5))), we could say well (f(-5)) is just (-2), is just (-2). So this is going to be equivalent to (g(-2)), (g(-2)), (g(-2)).

We're gonna take (-2) into (g) and we're gonna output (g(-2)). So we're taking that output, (-2), and we're inputting it into (g). So when (x = -2), when (x = -2), what is (g)?

So we see, when (x = -2), (g)... the graph is right over there, (g(-2) = 1). So this is going to be (1).

So (g(f(-5))) sounds really complicated; we were able to figure out is (1) 'cause you input (-5) into (f), it outputs (-2). And then you input (-2) into (g), it outputs (1) and we're all done.

More Articles

View All
Subtracting fractions with unlike denominators introduction
[Instructor] Let’s say we wanted to figure out what one half minus one third is equal to. And we can visualize each of these fractions. One half could look like that where if I take a whole and if I divide it into two equal sections, one of those two eq…
My Competitive Weapon In Business | Yahoo Finance
Dyslexia, however, to me, is a competitive weapon. You have to take this like a superpower that’s unconstrained and focus it. You have to use it as a tool. It’s the out-of-the-box thinkers that make companies competitive—the crazy ones, the dyslexic ones.…
how to procrastinate productively
Do you procrastinate a lot? I’m sure you do. There are countless videos, books, podcasts, any sort of content about how not to procrastinate and, you know, just get up right away and finish all of your tasks. There are so many of them, and I’m sure that y…
Charlie Munger: Why Net Worth EXPLODES After $100k
The hard part of the process for most people is the first $100,000. If you have a standing start at zero, getting together $100,000 is a long struggle. Getting your first $100,000 saved and invested will transform your life in ways you cannot yet imagine.…
Refraction of light | Physics | Khan Academy
We see incredible optical illusions all around us almost every day, right? But what causes them? One of the main reasons is that when light goes from one medium to another, like say from vacuum or air into glass, it changes its speed, because of which it …
Determining if a function is invertible | Mathematics III | High School Math | Khan Academy
[Voiceover] “F is a finite function whose domain is the letters a to e. The following table lists the output for each input in f’s domain.” So if x is equal to a, then if we input a into our function, then we output -6. f of a is -6. We input b, we get …