yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating composite functions: using graphs | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • So we have the graphs of two functions here. We have the graph (y) equals (f(x)) and we have the graph (y) is equal to (g(x)). And what I wanna do in this video is evaluate what (g(f(...)). Let me do the (f(...)) in another color. (f(-5)) is... (f(-5)) is...

And it can sometimes seem a little daunting when you see these composite functions. You're evaluating the function (g) at (f(-5)). What does all this mean? We just have to remind ourselves what functions are all about. They take an input and they give you an output.

So really, what we're doing is we're going to take... we have the function (f). We have the function (f). We're going to input (-5) into that function. We're going to input (-5) into that function and it's going to output (f(-5)). It's going to output (f(-5)) and we can figure what that is.

And then that's going to be the input into the function (g). So that's going to be the input into the function (g) and so we're going to... and then the output is going to be (g(f(-5))), (g(f(-5))). Let's just do it step by step.

So the first thing we wanna figure out is what is the function (f) when (x = -5)? What is (f(-5))? Well, we just have to see when (x) is equal to (-5). When (x) is equal to (-5), the function is right over here. Let's see, let me see if I can draw a straight line.

So then (x = -5). The function is right over here. It looks like (f(-5) = -2). It's equal to (-2). You see that right over there. So, (f(-5) = -2).

And so we can now think of this. Instead of saying (g(f(-5))), we could say well (f(-5)) is just (-2), is just (-2). So this is going to be equivalent to (g(-2)), (g(-2)), (g(-2)).

We're gonna take (-2) into (g) and we're gonna output (g(-2)). So we're taking that output, (-2), and we're inputting it into (g). So when (x = -2), when (x = -2), what is (g)?

So we see, when (x = -2), (g)... the graph is right over there, (g(-2) = 1). So this is going to be (1).

So (g(f(-5))) sounds really complicated; we were able to figure out is (1) 'cause you input (-5) into (f), it outputs (-2). And then you input (-2) into (g), it outputs (1) and we're all done.

More Articles

View All
Why You Should Want Driverless Cars On Roads Now
All right, I’m about to go for my first ever ride in a fully autonomous vehicle. Whoa, no driver. All right. [Electronic Voice] Good morning, Derek. This car is all yours with no one up front. I really like the idea of fully autonomous vehicles, but it’…
The First Meeting of EDUtubers! ft. CGPGrey, Vsauce, Smarter Every Day, Numberphile +more
Hey, Veritasium! Michael [Stevens] from Vsauce here, and we’re gonna ask some important questions. Let’s find some random bystanders…how about you? Yes? Michael: I don’t believe you’re scientifically literate. Okay. Michael: If a tomato is a fruit, do…
Frozen In Time | Continent 7: Antarctica
You ready? Get ready. Are you ready? Yeah. NARRATOR: Barbara Bollard-Breen and her team are here to create a virtual version of a historic hut that’s over 100 years old, in order to help protect it. Here we go. NARRATOR: And she’s about to step inside f…
Harris Proposes $50k Tax Break For Small Businesses
You’ve helped entrepreneurs jump start their small business. There’s also this proposal about a $50,000 tax deduction for businesses. How does that sound to you? Look, I’m very happy that you talked about small business because you got to remember her ad…
What's Inside Your Paper Money? | Origins: The Journey of Humankind
The United States is so obsessively protective of its currency that it guards its security right down to the specific fibers that comprise each bill. US currency may be the most counterfeited money in the world. McCrane Paper here in Dalton became the sup…
Giraffes on a Boat | Podcast | Overheard at National Geographic
It’s kind of a bit Jurassic Parkish, like you can hear her rustling through the bushes but you can’t see her. And that the brush was just so thick, and you know with inch-long acacia thorns or, you know, the other kind of hooked-shaped thorn, so it was a …