yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating composite functions: using graphs | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

  • So we have the graphs of two functions here. We have the graph (y) equals (f(x)) and we have the graph (y) is equal to (g(x)). And what I wanna do in this video is evaluate what (g(f(...)). Let me do the (f(...)) in another color. (f(-5)) is... (f(-5)) is...

And it can sometimes seem a little daunting when you see these composite functions. You're evaluating the function (g) at (f(-5)). What does all this mean? We just have to remind ourselves what functions are all about. They take an input and they give you an output.

So really, what we're doing is we're going to take... we have the function (f). We have the function (f). We're going to input (-5) into that function. We're going to input (-5) into that function and it's going to output (f(-5)). It's going to output (f(-5)) and we can figure what that is.

And then that's going to be the input into the function (g). So that's going to be the input into the function (g) and so we're going to... and then the output is going to be (g(f(-5))), (g(f(-5))). Let's just do it step by step.

So the first thing we wanna figure out is what is the function (f) when (x = -5)? What is (f(-5))? Well, we just have to see when (x) is equal to (-5). When (x) is equal to (-5), the function is right over here. Let's see, let me see if I can draw a straight line.

So then (x = -5). The function is right over here. It looks like (f(-5) = -2). It's equal to (-2). You see that right over there. So, (f(-5) = -2).

And so we can now think of this. Instead of saying (g(f(-5))), we could say well (f(-5)) is just (-2), is just (-2). So this is going to be equivalent to (g(-2)), (g(-2)), (g(-2)).

We're gonna take (-2) into (g) and we're gonna output (g(-2)). So we're taking that output, (-2), and we're inputting it into (g). So when (x = -2), when (x = -2), what is (g)?

So we see, when (x = -2), (g)... the graph is right over there, (g(-2) = 1). So this is going to be (1).

So (g(f(-5))) sounds really complicated; we were able to figure out is (1) 'cause you input (-5) into (f), it outputs (-2). And then you input (-2) into (g), it outputs (1) and we're all done.

More Articles

View All
AI is terrifying, but not for the reasons you think!
The robots are going to take over. That’s the fear, isn’t it? With the evolution of artificial intelligence moving at an almost incomprehensibly fast pace, it’s easy to understand why we get preoccupied with this idea. Everywhere we turn, there are headli…
Ordering decimals
What we’re gonna do in this video is do a few examples ordering numbers that involve decimals. So let’s say that we had the numbers 1.001, 0.113, and 1.101. What I would like you to do is order these numbers from least to greatest. Take out some paper an…
... and why!
The reason this trick works every single time is elegantly simple. It has everything to do with the fact that their chosen card will always be in a pack that is third from the top. That’s because we had them take the pack containing their card, see? Ther…
This Is Your Brain on Nature | Explorer
[Music] As a nature writer, I’ve always intuitively known that it was healthy for human beings to be out in the natural world. But it’s amazing what science has proven about what nature does to your brain. Some of the scientists I’ve been talking to would…
The scientific method
Let’s explore the scientific method. Which at first might seem a bit intimidating, but when we walk through it, you’ll see that it’s actually almost a common-sense way of looking at the world and making progress in our understanding of the world and feeli…
Dynamic equilibrium | Equilibrium | AP Chemistry | Khan Academy
To illustrate the concept of equilibrium, let’s say that we have a beaker and we put some water into our beaker. We also make sure that our beaker has a lid on it. Some of those water molecules are going to evaporate and turn into a gas, and eventually, o…