yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why is Alzheimer’s disease so difficult to treat? - Krishna Sudhir


4m read
·Nov 8, 2024

Around the world, tens of millions of people have Alzheimer's disease, a debilitating brain disorder that gradually destroys a person's memory and other cognitive abilities. It takes a heavy toll on both patients and families, as caring for a loved one with Alzheimer's can be emotionally overwhelming and financially difficult. While doctors have studied Alzheimer's for decades, conducting hundreds of clinical trials, there is still no effective preventive treatment or cure.

So, why is Alzheimer's disease so difficult to treat? Alzheimer's accounts for 60 to 80% of all dementia patients worldwide. Dementia is a broader term, used to describe a variety of conditions that affect a patient's memory, thinking skills, and everyday functions. Most Alzheimer's patients first notice symptoms in their 60s, experiencing mild memory problems, like losing track of dates or forgetting what they just learned. Some experience other changes, like frequent shifts in mood, increased anxiety and agitation, and problems with coping in new situations.

Symptoms typically progress gradually over years, and eventually, a person with Alzheimer's may require constant care. Some rare forms of Alzheimer's are caused by a single inherited gene variant. But most of the time, Alzheimer's is due to the complex interaction of multiple genes in combination with lifestyle and environmental factors, so it's impossible to predict who will develop the disease. Alzheimer's involves a long, chronic process, resulting in many changes to the brain, that likely starts to unfold at least 1 to 2 decades before symptoms first appear.

So, it's been difficult for scientists to pinpoint exactly what triggers this process and what causes the many symptoms of Alzheimer's. But thanks to continued research, they're beginning to put this puzzle together. Initially, scientists noticed that the brains of Alzheimer's patients display an abnormal buildup of a compound called beta-amyloid. Beta-amyloid is created when a large protein, amyloid-beta precursor protein, or APP, is broken down. APP plays an essential role in the brain, aiding in neural growth and repair.

However, in Alzheimer's patients, it's thought that APP is improperly cleaved, creating sticky beta-amyloid byproducts, which easily clump together. These plaques can build up in the spaces between neurons and interfere with normal brain signaling. But this likely isn't the full story. While all patients with Alzheimer's have plaques, not all people with plaques have or will develop dementia. And Alzheimer's symptoms don't always become more severe as plaques accumulate in the brain.

In the 1980s, another protein, tau, emerged as a possible contributor. Tau's normal role is as a scaffolding protein, to help reinforce the internal structure of neurons and give them their shape. But in Alzheimer's patients, tau is modified and misfolded, causing it, like beta-amyloid, to become sticky and clump. These tau tangles accumulate within neurons and are toxic, causing the cells to eventually die. In patients, plaques normally appear before tangles; yet questions still remain.

Do amyloid plaques trigger tau dysfunction? And why exactly do these abnormal proteins lead to such specific disease symptoms? To make matters more complex, recent studies have found that Alzheimer's is closely linked to changes in the way immune cells, called microglia, function in the brain. Others have found that Alzheimer's may also be caused by problems in the junctions between neurons, called synapses. And alterations in the way the brain produces and burns energy may also be an underlying factor.

Together, all this suggests that Alzheimer's is likely caused by a complex cascade of events. And teasing out the order of events, and how to stop it once it starts, will take more research. But there are things patients can do to better manage symptoms. Staying active, learning new skills, and even participating in daily activities, like household chores, seems to slow disease progression. Medications that target neurotransmitters, the brain's signaling molecules, can slow memory loss and help with learning and reasoning.

And scientists continue to develop new therapies. For example, drugs that target beta-amyloid have shown promise in slowing the disease and reducing plaque accumulation in the brain. Alzheimer's disease won't go away anytime soon. Dementia cases are expected to double in the next 20 years. But continued research holds the promise of better treatment and perhaps one day, prevention, as scientists piece the Alzheimer's puzzle together.

More Articles

View All
It's Time To Fight Back Against China!
Kevin, are you a tariff man? I am actually in the case of China. I don’t like tariffs generally, but China, we’re in an economic war with. There’s 100% that that’s the case. They don’t play by a level playing field. I do business there, so this is not an …
Introduction to residuals and least squares regression
So I’m interested in finding the relationship between people’s height in inches and their weight in pounds. I’m randomly sampling a bunch of people, measuring their height, measuring their weight, and then for each person, I’m plotting a point that repres…
The Truth Behind Branson and Bezos Going to Space... (Virgin Galactic and Blue Origin Launches)
So, over the past month, billionaires Jeff Bezos and Sir Richard Branson both independently announced that they themselves would be suiting up, hopping in their respective companies’ rockets and launching into space. Jeff Bezos would take to the skies in …
Cellular evidence of common ancestry | High school biology | Khan Academy
Perhaps the most mind-blowing idea in all of biology is the concept that all living things we know of, based on current evidence that we have, all originated from a common ancestor. So it doesn’t matter whether we’re talking about a simple bacterial cell,…
Dividing whole numbers by 10 | Math | 4th grade | Khan Academy
Dividing by 10, a lot like multiplying by 10, creates a pattern with numbers. So let’s dig in and look at dividing by 10. Look at what happens when we divide by 10 and see if we can figure out that pattern and maybe even how it relates to the pattern for …
How Confidence Is Holding You Back
Hello Alexa, welcome back. Let’s be real here for a moment. Everything that is worth doing and everything that is worth getting needs a healthy dose of something that today’s society doesn’t really have anymore. And that thing is courage. The courage to …