yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Conclusion for a two-sample t test using a P-value | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A sociologist studying fertility in France and Switzerland wanted to test if there was a difference in the average number of babies women in each country have. The sociologists obtained a random sample of women from each country. Here are the results of their test:

You can see a hundred percent sample from France, 100 sample from Switzerland. They actually don't have to be the same sample size. We have our sample means, our sample standard deviations. You have the standard error of the mean, which for each sample would be our estimate of the standard deviation of the sampling distribution of the sample mean.

And here it says t-test for the means of these different populations being different. Just to make sure we can make sense of this, let's just remind ourselves what's going on. The null hypothesis is that there's no difference in the mean number of babies that women in France have versus the mean number of babies that women in Switzerland have. That would be our null hypothesis—the no news here hypothesis.

Our alternative would be that they are different, and that's what we have right over here. It's a t-test to see if we have evidence that would suggest our alternative hypothesis. What we do is we assume the null hypothesis. From that, you're able to calculate a t statistic, and then from that t statistic and the degrees of freedom, you are able to calculate a p-value.

If that p-value is below your significance level, then you say, "Hey, this was a pretty unlikely scenario. Let me reject the null hypothesis," which would suggest the alternative. But if your p-value is greater than your significance level, then you would fail to reject your null hypothesis, and so you would not have sufficient evidence to conclude the alternative.

So what's going on over here? You really just have to compare this value to this value. It says, "At the alpha is equal to 0.05 level of significance, is there sufficient evidence to conclude that there is a difference in the average number of babies women in each country have?" Well, we can see that our p-value, 0.13, is greater than our alpha value, 0.05.

Because of that, we fail to reject our null hypothesis. To answer their question, no, there is not sufficient evidence to conclude that there is a difference. There is not sufficient evidence to reject the null hypothesis and suggest the alternative.

More Articles

View All
REAL NYAN CAT ... and more! IMG #38
This is what heaven is like. And things just got a little too real. It’s episode 38 of IMG! Okay, so this is Katy Perry and this is Paula Deen. Uh-oh. Because this is Tom Hanks and this is 50 Cent. Coincidence? Here’s a caterpillar whose pattern resembl…
Loanable funds market | Financial sector | AP Macroeconomics | Khan Academy
We are used to thinking about markets for goods and services, and demand and supply of goods and services. What we’re going to do in this video is broaden our sense of what a market could be for by thinking about the market for loanable funds. Now, this …
Introduction to the chi-square test for homogeneity | AP Statistics | Khan Academy
We’ve already been introduced to the chi-squared statistic in other videos. Now, we’re going to use it for a test for homogeneity. In everyday language, this means how similar things are, and that’s what we’re essentially going to test here. We’re going …
MIT Dean of Admissions, Stu Schill, says the perfect applicant doesn't exist | Homeroom with Sal
Hi everyone, Sal Khan here from Khan Academy. Welcome to our daily homeroom live stream. For those of y’all who are new, this is something that we started doing, it feels like a lifetime ago now, almost two and a half months ago, when we started seeing sc…
Sources of income during retirement | Investments and retirement | Financial literacy | Khan Academy
Let’s talk a little bit about sources of income during retirement. So, we’re assuming you’re retired, you’re not working, so you’re not going to get that income. But one of them is perhaps just your straight-up investment income. You save money over time…
Worked example: identifying separable equations | AP Calculus AB | Khan Academy
Which of the differential equations are separable? I encourage you to pause this video and see which of these are actually separable. Now, the way that I approach this is I try to solve for the derivative. If when I solve for the derivative, I get ( \fra…