yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Conclusion for a two-sample t test using a P-value | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

A sociologist studying fertility in France and Switzerland wanted to test if there was a difference in the average number of babies women in each country have. The sociologists obtained a random sample of women from each country. Here are the results of their test:

You can see a hundred percent sample from France, 100 sample from Switzerland. They actually don't have to be the same sample size. We have our sample means, our sample standard deviations. You have the standard error of the mean, which for each sample would be our estimate of the standard deviation of the sampling distribution of the sample mean.

And here it says t-test for the means of these different populations being different. Just to make sure we can make sense of this, let's just remind ourselves what's going on. The null hypothesis is that there's no difference in the mean number of babies that women in France have versus the mean number of babies that women in Switzerland have. That would be our null hypothesis—the no news here hypothesis.

Our alternative would be that they are different, and that's what we have right over here. It's a t-test to see if we have evidence that would suggest our alternative hypothesis. What we do is we assume the null hypothesis. From that, you're able to calculate a t statistic, and then from that t statistic and the degrees of freedom, you are able to calculate a p-value.

If that p-value is below your significance level, then you say, "Hey, this was a pretty unlikely scenario. Let me reject the null hypothesis," which would suggest the alternative. But if your p-value is greater than your significance level, then you would fail to reject your null hypothesis, and so you would not have sufficient evidence to conclude the alternative.

So what's going on over here? You really just have to compare this value to this value. It says, "At the alpha is equal to 0.05 level of significance, is there sufficient evidence to conclude that there is a difference in the average number of babies women in each country have?" Well, we can see that our p-value, 0.13, is greater than our alpha value, 0.05.

Because of that, we fail to reject our null hypothesis. To answer their question, no, there is not sufficient evidence to conclude that there is a difference. There is not sufficient evidence to reject the null hypothesis and suggest the alternative.

More Articles

View All
Applying the chain rule twice | Advanced derivatives | AP Calculus AB | Khan Academy
Let’s say that y is equal to sine of x squared to the third power, which of course we could also write as sine of x squared to the third power. What we’re curious about is what is the derivative of this with respect to x? What is dy/dx, which we could als…
Homeroom with Sal & Jeffrey Rosen - Thursday, September 17
Hi everyone, welcome to the homeroom live stream! Sal here from Khan Academy. A happy National Constitution Day for all of y’all from the United States. We’ll be digging deep into the U.S. Constitution with one of the world’s leading experts on it. So, st…
Even and odd functions: Tables | Transformations of functions | Algebra 2 | Khan Academy
We’re told this table defines function f. All right, for every x, they give us the corresponding f of x according to the table. Is f even, odd, or neither? So pause this video and see if you can figure that out on your own. All right, now let’s work on t…
Diego Saez Gil - How Pachama Uses Tech to Solve Climate Change
Alright guys, welcome to the podcast! How’s it going to you? It’s going great. So today we have Diego Sayis Gil of Pochamma from the Winter ‘19 batch and Gustav Helstrom, who is a partner at YC. So today we’re here to talk about Diego’s company. Gustav, w…
Peter Lynch: How to Invest Small Amounts of Money
I think the public can do extremely well in the stock market on their own. I think the fact that institutions dominate the market today is a positive for small investors. These institutions push stocks on usual lows; they push them on usual highs. For som…
"YOU WON'T BELIEVE YOUR EYES!" - Smarter Every Day 142
Hey, it’s me Destin. Welcome back to Smarter Every Day. You won’t believe your eyes. You’ve heard this before, right? It’s usually like a clickbait title to get you to watch an internet video or read a stupid article. But are there cases when you actually…