yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphical limit at asymptotic discontinuity


2m read
·Nov 11, 2024

All right, we have a graph of ( y ) is equal to ( f(x) ), and we want to figure out what is the limit of ( f(x) ) as ( x ) approaches negative three. If we just look at ( x = -3 ), it's really hard to see, at least based on how this graph looks, what ( f(-3) ) is. If anything, it looks like we have an asymptotic discontinuity here.

It looks like, on the left side of ( x = -3 ), we're approaching, I guess you could say, infinity; and on the right side, it looks like we're approaching infinity as well. We could just look at that and say, "Well, look, what is ( f(-5) )?" Well, it's 4. ( f(-4) ) looks like it's around, I don't know, around 8. ( f(-3) ) is off the charts. If we continued with this trend, and if we were to asymptote towards this line right over here, this vertical asymptote, it looks like as we get closer and closer to negative 3, the value of the function at that point is approaching—it's getting closer and closer to infinity.

At least that's what it looks like from what we can see on this graph as we approach negative 3 from the left-hand side. Let's think about what's happening as we approach negative 3 from the right-hand side. So this is ( f(-1) ), ( f(-2) ), and ( f(-2.5) ) looks like it's up here someplace. ( f(-2.9) ) would be even higher, and ( f(-2.999) ) looks like it would just once again approach infinity.

So this type of limit, in some context, you would say that this limit doesn't exist, doesn't exist in the formal sense. So that's one way to think about it. In some contexts, you will hear people say that this limit, since from the left and from the right, it looks like it's going to infinity. Sometimes you will see people say that it is approaching infinity, and so this is depending on what type of class or context you're in. But in the traditional sense of the limit, or in the technical sense, there are ways that you can define limits where this would make a little bit more sense. However, the traditional definition of a limit would be you would say that this limit does not exist.

More Articles

View All
Dividing polynomials by x (no remainders) | Algebra 2 | Khan Academy
What I’d like to do in this video is try to figure out what ( x ) to the fourth minus ( 2x ) to the third plus ( 5x ) divided by ( x ) is equal to. So pause this video and see if you can have a go at that before we work through this together. All right, …
The Lagrangian
All right, so today I’m going to be talking about the Lagrange multipliers. Now, we’ve talked about Lagrange multipliers; this is a highly related concept. In fact, it’s not really teaching anything new; this is just repackaging stuff that we already know…
Conjugate acid–base pairs | Chemical reactions | AP Chemistry | Khan Academy
In this video, we’re going to be talking about conjugate acid-base pairs. We’re going to introduce the idea of a conjugate acid-base pair using an example reaction. The example reaction is between hydrogen fluoride, or HF, and water. So, hydrogen fluorid…
Uncover Antarctica - BTS | National Geographic | OPPO
Antarctica is a land of extremes, and it’s got an incredible grand scale. So it’s very difficult to try and capture it with images. Being a National Geographic photographer creates an opportunity for me to document the world, and you don’t know what you’r…
Charlie Munger on Why Are People So Unhappy? | Daily Journal 2022 【YAPSS Highlight】
Speaker: What worries you most about our economy and the stock market, and on the other hand what makes you optimistic? Well, you have to be optimistic about the competency of our technical civilization. But there again, it’s an interesting thing if you t…
Writing equilibrium constant and reaction quotient expressions | AP Chemistry | Khan Academy
The equilibrium constant is symbolized by the letter K, and the equilibrium constant tells us about the relative concentrations of reactants and products at equilibrium. Let’s say we have a hypothetical reaction where reactants A and B turn into products…