yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphical limit at asymptotic discontinuity


2m read
·Nov 11, 2024

All right, we have a graph of ( y ) is equal to ( f(x) ), and we want to figure out what is the limit of ( f(x) ) as ( x ) approaches negative three. If we just look at ( x = -3 ), it's really hard to see, at least based on how this graph looks, what ( f(-3) ) is. If anything, it looks like we have an asymptotic discontinuity here.

It looks like, on the left side of ( x = -3 ), we're approaching, I guess you could say, infinity; and on the right side, it looks like we're approaching infinity as well. We could just look at that and say, "Well, look, what is ( f(-5) )?" Well, it's 4. ( f(-4) ) looks like it's around, I don't know, around 8. ( f(-3) ) is off the charts. If we continued with this trend, and if we were to asymptote towards this line right over here, this vertical asymptote, it looks like as we get closer and closer to negative 3, the value of the function at that point is approaching—it's getting closer and closer to infinity.

At least that's what it looks like from what we can see on this graph as we approach negative 3 from the left-hand side. Let's think about what's happening as we approach negative 3 from the right-hand side. So this is ( f(-1) ), ( f(-2) ), and ( f(-2.5) ) looks like it's up here someplace. ( f(-2.9) ) would be even higher, and ( f(-2.999) ) looks like it would just once again approach infinity.

So this type of limit, in some context, you would say that this limit doesn't exist, doesn't exist in the formal sense. So that's one way to think about it. In some contexts, you will hear people say that this limit, since from the left and from the right, it looks like it's going to infinity. Sometimes you will see people say that it is approaching infinity, and so this is depending on what type of class or context you're in. But in the traditional sense of the limit, or in the technical sense, there are ways that you can define limits where this would make a little bit more sense. However, the traditional definition of a limit would be you would say that this limit does not exist.

More Articles

View All
Suppressor Schlieren Shock Waves in Slow Motion - Smarter Every Day 204
A quick caveat before we get started here. I do not want Smarter Every Day to be observed as a channel that glorifies weaponry. I am just fascinated by fluid dynamics, ballistics, optics, mechanics, aerodynamics. All this stuff is just fascinating to me. …
Two Routes to the Americas | The Great Human Race
After being trapped on the Bering Land Bridge for several thousand years, our ancestors headed south in search of warmer climates and better food sources. Once people made it across the land bridge, it was like the floodgates opened up. Kent and I are spl…
Analyzing problems involving definite integrals | AP Calculus AB | Khan Academy
The population of a town grows at a rate of ( r(t) = 300 e^{0.3t} ) people per year, where ( t ) is time in years. At time ( t = 2 ), the town’s population is 1200 people. What is the town’s population at ( t = 7 )? Which expression can we use to solve t…
A Fun, Animated History of the Reformation and the Man Who Started It All | Short Film Showcase
[Music] A most precise and nuanced look into the life of the man, legend, and visionary Martin Luther. One day, when Luther is 21 years old, he experiences something which will affect him for the rest of his life. Suddenly, a thunderstorm—a wild, violent…
The Student's Guide To Becoming A Successful Startup Founder
Your job is to be an optimist. Your job is to believe amazing things about what you can do with your life and what you do in the world when you’re young. That’s the point. That’s the point. That’s why the world needs young people. [Music] This is Michae…
15 Things To Do If You Get Rich All of a Sudden
This is the Sunday motivational video. Every Sunday, we bring you a different type of video which should improve your life. Today we’re looking at 15 things to do if you get rich all of a sudden. Welcome to A Luxe, the place where future billionaires come…