yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphical limit at asymptotic discontinuity


2m read
·Nov 11, 2024

All right, we have a graph of ( y ) is equal to ( f(x) ), and we want to figure out what is the limit of ( f(x) ) as ( x ) approaches negative three. If we just look at ( x = -3 ), it's really hard to see, at least based on how this graph looks, what ( f(-3) ) is. If anything, it looks like we have an asymptotic discontinuity here.

It looks like, on the left side of ( x = -3 ), we're approaching, I guess you could say, infinity; and on the right side, it looks like we're approaching infinity as well. We could just look at that and say, "Well, look, what is ( f(-5) )?" Well, it's 4. ( f(-4) ) looks like it's around, I don't know, around 8. ( f(-3) ) is off the charts. If we continued with this trend, and if we were to asymptote towards this line right over here, this vertical asymptote, it looks like as we get closer and closer to negative 3, the value of the function at that point is approaching—it's getting closer and closer to infinity.

At least that's what it looks like from what we can see on this graph as we approach negative 3 from the left-hand side. Let's think about what's happening as we approach negative 3 from the right-hand side. So this is ( f(-1) ), ( f(-2) ), and ( f(-2.5) ) looks like it's up here someplace. ( f(-2.9) ) would be even higher, and ( f(-2.999) ) looks like it would just once again approach infinity.

So this type of limit, in some context, you would say that this limit doesn't exist, doesn't exist in the formal sense. So that's one way to think about it. In some contexts, you will hear people say that this limit, since from the left and from the right, it looks like it's going to infinity. Sometimes you will see people say that it is approaching infinity, and so this is depending on what type of class or context you're in. But in the traditional sense of the limit, or in the technical sense, there are ways that you can define limits where this would make a little bit more sense. However, the traditional definition of a limit would be you would say that this limit does not exist.

More Articles

View All
Worked example: sequence explicit formula | Series | AP Calculus BC | Khan Academy
If a_sub_n is equal to (n^2 - 10) / (n + 1), determine a_sub_4 + a_sub_9. Well, let’s just think about each of these independently. a_sub_4, let me write it this way: a the fourth term. So a_sub_4, so our n, our lowercase n, is going to be four. It’s go…
Remarks by Kirsty Nathoo
So that wraps up the day of talks. We do have a reception now downstairs; that’s downstairs where you had your lunch, and also outside in the courtyard. Before everybody disappears, I do have some thank yous. Thank you very much to everybody who has been…
Slope and y intercept from equation
What I’d like to do in this video is a few more examples recognizing the slope and y-intercept given an equation. So let’s start with something that we might already recognize: let’s say we have something of the form (y = 5x + 3). What is the slope and …
Ellipse standard equation from graph | Precalculus | High School Math | Khan Academy
So we have an ellipse graph right over here. What we’re going to try to do is find the equation for this ellipse. So like always, pause this video and see if you can figure it out on your own. All right, so let’s just remind ourselves of the form of an e…
Why You Care So Much
I made my first video on this channel in July 2017 after months of going back and forth on whether or not I actually wanted to create a YouTube channel. What would people think? What if people hate the videos and tell me that I don’t know what I’m talking…
One-step multiplication equations: fractional coefficients | 6th grade | Khan Academy
Let’s say that we have the equation two-fifths x is equal to ten. How would you go about solving that? Well, you might be thinking to yourself it would be nice if we just had an x on the left-hand side instead of a two-fifths x, or if the coefficient on t…