yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphical limit at asymptotic discontinuity


2m read
·Nov 11, 2024

All right, we have a graph of ( y ) is equal to ( f(x) ), and we want to figure out what is the limit of ( f(x) ) as ( x ) approaches negative three. If we just look at ( x = -3 ), it's really hard to see, at least based on how this graph looks, what ( f(-3) ) is. If anything, it looks like we have an asymptotic discontinuity here.

It looks like, on the left side of ( x = -3 ), we're approaching, I guess you could say, infinity; and on the right side, it looks like we're approaching infinity as well. We could just look at that and say, "Well, look, what is ( f(-5) )?" Well, it's 4. ( f(-4) ) looks like it's around, I don't know, around 8. ( f(-3) ) is off the charts. If we continued with this trend, and if we were to asymptote towards this line right over here, this vertical asymptote, it looks like as we get closer and closer to negative 3, the value of the function at that point is approaching—it's getting closer and closer to infinity.

At least that's what it looks like from what we can see on this graph as we approach negative 3 from the left-hand side. Let's think about what's happening as we approach negative 3 from the right-hand side. So this is ( f(-1) ), ( f(-2) ), and ( f(-2.5) ) looks like it's up here someplace. ( f(-2.9) ) would be even higher, and ( f(-2.999) ) looks like it would just once again approach infinity.

So this type of limit, in some context, you would say that this limit doesn't exist, doesn't exist in the formal sense. So that's one way to think about it. In some contexts, you will hear people say that this limit, since from the left and from the right, it looks like it's going to infinity. Sometimes you will see people say that it is approaching infinity, and so this is depending on what type of class or context you're in. But in the traditional sense of the limit, or in the technical sense, there are ways that you can define limits where this would make a little bit more sense. However, the traditional definition of a limit would be you would say that this limit does not exist.

More Articles

View All
How Your Toothbrush Became a Part of the Plastic Crisis | National Geographic
(Tapping) [Narrator] Hopefully you know this already but … that’s a toothbrush. So are these. And the one thing they have in common: they’re all plastic. But here’s something you might not know. This routine has been around for a millennia. And back then…
What You Might Not Know About Twitter | Squawkbox
[Music] Said wow. With Jack departing, the Twitter board collectively owns almost no shares. Objectively, their economic interests are simply not in line with shareholders. Joining us to talk about the takeover battle and Musk’s stance on free speech, Kev…
Are we in a REAL ESTATE BUBBLE?!
What’s up you guys? It’s Graham here. So first off, I want to say this is a bit of a technical video. It might be a little bit more in-depth than the other videos I’ve done, but for those that are into that sort of stuff, I think you guys are really going…
Phototropism | Plant Biology | Khan Academy
You’ve probably seen plants either in your house or, if you go for a walk, you’ve seen parts of the plants twist and turn in all sorts of directions. If you observe closely, you’ll see that oftentimes it looks like the plant is twisting or turning towards…
The future of creativity in biology | High school biology | Khan Academy
[Music] [Music] Hi everyone! Salcon here. I think we’re about to enter what will be considered the golden age of biology, where not only do we understand or are starting to understand the genetic basis of things, but we also have the power to control it. …
Message to LearnStormers from Paralympic ski racer Josh Sundquist
Learn, Stromer’s! My name is Josh Sundquist. I am a YouTuber, best-selling author, and a Paralympic ski racer. I first started ski racing when I was a teenager. I went to my first race thinking I was like the best skier of all time, and it was gonna be am…