yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Einstein's Theory of Relativity Can't Explain Nonlocality | Big Think


3m read
·Nov 4, 2024

So spooky action at a distance was Einstein’s kind of appellation for the idea of nonlocality. Non-locality is the technical term for it.

So the example I often give is two coins. You can treat some of these particles as having two possible outcomes of a measurement. You can think about it as heads or tails of a coin. So you create two of them. You give one to your friend. Your friend goes off somewhere and you keep the other.

And you both flip the coin and you come up with heads; they come up with heads. You come up with tails; they come up with tails. Heads, tails. It just goes back and forth. And yet they’re the same answer on both sides.

So this non-local connection among these particles or whatever kind of object is bearing that connection seems to violate our intuition from Einstein’s Theory of Relativity. That theory, among other things, said that influences in nature are limited by the speed of light.

So you can’t have any kind of subspace radio or answerable like they have in science fiction. There has to be a limit to the speed at which influences, the signals, can propagate. So these particles, which can exist on the opposite sides of the universe, seem to disobey that principle.

But the situation’s kind of subtle, and the reason it’s subtle is that the particles are unable to send an ordinary communication. You can’t use them to radio a signal or have some kind of telemetry or remote control across that gap.

And the reason is quite simple. The reasons are that the outcomes of those particle experiments or the flips of the coin are random. So they just come up heads or tails and heads or tails, and you can’t decide—Is it heads or is it tails? So you’ve got no way to manipulate the coin and thereby produce an outcome at the distant location.

So you can’t communicate. You can’t send a signal. On the one hand, the phenomena seems to violate relativity theory. But on the other hand, it kind of pulls back from the precipice. It doesn’t actually violate it in a practical sense.

You can’t send a signal faster than light. It still, however, poses kind of a theoretical conundrum. Why are these particles able to coordinate their behavior even though they’re so far apart?

So there’s a tension with Einstein’s Theory of Relativity—not perhaps an outright observed contradiction of the theory. The question of why these particles can coordinate, why these coins can land on the same side no matter where they might be, is really—it could be very perplexing. And Einstein was troubled by it.

He thought the particles, for instance, basically had a mechanism in them or some kind of like gimmick built into them, like a magician would have, kind of a trick coin. And he thought the particles were also like trick coins; they were preprogrammed to land on one side or the other.

But in the '60s and '70s, that particular explanation was ruled out. So the other possibility is that there might be some kind of signal going between them. But that seems to be ruled out because you couldn’t do the experiment kind of in synchrony.

You can do it at the same time, and yet the coins can still act in a coordinated way. So you’re kind of left with like—what’s going on? It’s just a mystery here.

There’s almost like a magical magic wand or Obi-Wan sensing the disruption of all Alderaan kind of situation going on here. It’s kind of a magical situation.

So the thinking today is that it represents a violation, a kind of undermining of space, the very fabric of space. That things in the universe seem to be located far apart from one another. They have individual locations, and they need to interact by mechanisms that propagate within space.

And these particles violate that expectation—so it seems to indicate that space itself is somehow not fundamental. It’s not a real or deep feature of reality.

More Articles

View All
The Four Forces of Nature
The word “force” is used quite a bit these days. A government may threaten the use of force on another nation. A child might scream in protest at being “forced” to clean their room. But, even though we may not automatically think there’s any kind of scien…
Marc Andreessen at Startup School SV 2016
Okay, so, uh, up next we have a fireside chat with, uh, Mark Andreessen. Uh, come on out, Mark! I think he’s right back. [Applause] There, they know who you are. No introductions needed. So, uh, thanks for coming back. This is, uh, your third startup scho…
The World Has Changed! Here are the NEW RULES
The world of today and that of tomorrow is radically different than that of yesterday. We’re going through the biggest transfer of wealth and the biggest societal and cultural change in modern history. By the end of this video, you’ll understand what’s on…
A day in my life.
This is a day in the life of a private jet broker. I get into the office at six a.m., three hours before my team. I like getting in early to catch up on work and establish my plan of action for the rest of the day. I then call my clients in Asia, do email…
Why is this number everywhere?
Let me show you something unbelievable. Name a random number between 1 and 100. 61. Okay, that’s pretty random. [Emily] Just name a random number from 1 to 100, random. 43. 43, thank you so much. 56. 7. I want the most random number between 1 and …
What if You Were Born in Space?
Hey, Vsauce. Michael here. How many people are in space right now? Dot com tells us that the answer is 6. Ever since the first person reached outer space 52 years ago, more than 500 humans have left Earth, and they’ve gone as far as the moon, an impressiv…