yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Einstein's Theory of Relativity Can't Explain Nonlocality | Big Think


3m read
·Nov 4, 2024

So spooky action at a distance was Einstein’s kind of appellation for the idea of nonlocality. Non-locality is the technical term for it.

So the example I often give is two coins. You can treat some of these particles as having two possible outcomes of a measurement. You can think about it as heads or tails of a coin. So you create two of them. You give one to your friend. Your friend goes off somewhere and you keep the other.

And you both flip the coin and you come up with heads; they come up with heads. You come up with tails; they come up with tails. Heads, tails. It just goes back and forth. And yet they’re the same answer on both sides.

So this non-local connection among these particles or whatever kind of object is bearing that connection seems to violate our intuition from Einstein’s Theory of Relativity. That theory, among other things, said that influences in nature are limited by the speed of light.

So you can’t have any kind of subspace radio or answerable like they have in science fiction. There has to be a limit to the speed at which influences, the signals, can propagate. So these particles, which can exist on the opposite sides of the universe, seem to disobey that principle.

But the situation’s kind of subtle, and the reason it’s subtle is that the particles are unable to send an ordinary communication. You can’t use them to radio a signal or have some kind of telemetry or remote control across that gap.

And the reason is quite simple. The reasons are that the outcomes of those particle experiments or the flips of the coin are random. So they just come up heads or tails and heads or tails, and you can’t decide—Is it heads or is it tails? So you’ve got no way to manipulate the coin and thereby produce an outcome at the distant location.

So you can’t communicate. You can’t send a signal. On the one hand, the phenomena seems to violate relativity theory. But on the other hand, it kind of pulls back from the precipice. It doesn’t actually violate it in a practical sense.

You can’t send a signal faster than light. It still, however, poses kind of a theoretical conundrum. Why are these particles able to coordinate their behavior even though they’re so far apart?

So there’s a tension with Einstein’s Theory of Relativity—not perhaps an outright observed contradiction of the theory. The question of why these particles can coordinate, why these coins can land on the same side no matter where they might be, is really—it could be very perplexing. And Einstein was troubled by it.

He thought the particles, for instance, basically had a mechanism in them or some kind of like gimmick built into them, like a magician would have, kind of a trick coin. And he thought the particles were also like trick coins; they were preprogrammed to land on one side or the other.

But in the '60s and '70s, that particular explanation was ruled out. So the other possibility is that there might be some kind of signal going between them. But that seems to be ruled out because you couldn’t do the experiment kind of in synchrony.

You can do it at the same time, and yet the coins can still act in a coordinated way. So you’re kind of left with like—what’s going on? It’s just a mystery here.

There’s almost like a magical magic wand or Obi-Wan sensing the disruption of all Alderaan kind of situation going on here. It’s kind of a magical situation.

So the thinking today is that it represents a violation, a kind of undermining of space, the very fabric of space. That things in the universe seem to be located far apart from one another. They have individual locations, and they need to interact by mechanisms that propagate within space.

And these particles violate that expectation—so it seems to indicate that space itself is somehow not fundamental. It’s not a real or deep feature of reality.

More Articles

View All
Harvesting Wild Honey in the Amazon | Primal Survivor: Escape the Amazon | National Geographic
[Music] Up there is pure energy in its raw sporum. That’s exactly what I need: wild honey, a nutritious calorie-packed hit of energy. It’s pretty special stuff, but getting it is never easy. Oh, I’m getting stung all over! I just keep getting nailed by b…
Uranium: Twisting the Dragon's Tail
Did you know that after the 1986 Chernobyl nuclear disaster at reactor number four, the other reactors on that site were not shut down permanently? In fact, they were kept running, producing electricity by workers who were brought in by train every day to…
Share your career story with Khan Academy for our new series
Hi, I’m Sal Khan, founder of the Khan Academy, and I’m here to invite you to participate in an exciting project that we have around career. Our mission statement as a not-for-profit is to provide a free, world-class education for anyone, anywhere, and par…
Pluto 101 | National Geographic
[Instructor] At the edge of the solar system, Pluto pushes the boundaries of our understanding of the universe. Nestled within the far-flung Kuiper belt, the dwarf planet is believed to be one of the countless celestial objects left over from the formatio…
15 Skills That Pay Off Forever
The skills that we’re talking about here today have the largest impact on both your personal and professional life. They stick with you for your entire life and will continuously improve the quality of your existence. Most of them are a bit difficult to m…
NYT's David Leonhardt on inequality, the economy and the Covid-19 crisis | Homeroom with Sal
Hi everyone, Sal Khan here from Khan Academy. Welcome to our daily homeroom live stream, which is really just a way of having interesting conversations and staying connected during this time of school closures and social distancing. Before we get into wh…