yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked examples: Definite integral properties 1 | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We want to evaluate the definite integral from 3 to 3 of f of x dx. We're given the graph of f of x and of y equals f of x, and the area between f of x and the x-axis over different intervals.

Well, when you look at this, you actually don't even have to look at this graph over here because, in general, if I have the definite integral of any function f of x dx from, let's say, a to the same value, from one value to the same value, this is always going to be equal to zero. We're going from three to three; we could be going from negative pi to negative pi. It's always going to be zero. One way to think about it is we're starting and stopping here at three, so we're not capturing any area.

Let's do another one. Here, we want to find the definite integral from 7 to 4 of f of x dx. So we want to go from 7 to 4. You might be tempted to say, "Okay, well, look, the area between f of x and the x-axis is 2, so maybe this thing is 2." But the key realization is this area only applies when you have the lower bound as the lower bound and the higher value as the higher bound.

So, the integral from 4 to 7 of f of x dx—this thing, this thing is equal to 2. This thing is depicting that area right over there. So what about this where we've switched it? Instead of going from four to seven, we're going from seven to four. The key realization is if you switch the bounds—and this is a key definite integral property—this is going to give you the negative value.

So, this is going to be equal to the negative of the integral from 4 to 7 of f of x dx. Now, that is this area; f of x is above the x-axis; it's a positive area. So, this thing right over here is going to evaluate to positive 2, but we have that negative out front. So, our original expression would evaluate to negative 2.

More Articles

View All
Warren Buffett: America's 'Incredible' Days are OVER
America’s Incredible Days Are Over, and those aren’t my words. This is coming directly from legendary investor Warren Buffett, and at 92 years old, let’s just say he knows a thing or two about what it’s like to see an economy shift from boom times into a …
Warren Buffett on One Last Day with Charlie Munger | Berkshire Hathaway 2024
Hi, my name is Andrew Ncas, and I’m wondering if you had one more day with Charlie, what would you do with him? [Applause] Well, it’s kind of interesting because, in effect, I did have one more day. I mean, it wasn’t a full day or anything, but he, we al…
The Space Race | Meet Ed Dwight | National Geographic Documentary Films
My hope was just getting into space in any kind of way, but they were not gonna let that happen. And they said, number one, I wasn’t tall enough. I was Catholic. I wasn’t Black enough. I was not the model of the Negro race. I was a one-man operation when …
How ‘flow state’ can heal trauma | Steven Kotler for Big Think
All right, are my feet in or out of the shot? INTERVIEWER: It’s a wide shot… we’re seeing your feet. STEVEN KOTLER: Well, then you’re gonna have to deal with the ridiculous flip-flops, sorry about that. When I talk about ‘peak performance,’ I often def…
Psychopathy can be treated—but here’s why it rarely is | Prof. Abigail Marsh
Once upon a time, people thought that there were these people we could call “psychopaths,” who were over here, and then everybody else was just normal. And now I think we understand that that’s not true, and that psychopathy, like most psychological pheno…
Anne Finucane talks about supporting communities through the Covid-19 crisis. | Homeroom with Sal
Hi everyone, Sal Khan here from Khan Academy. Welcome to our daily homeroom live stream! For those of y’all who this is maybe the first time that you’re seeing this, you’re like, “What is this link on YouTube or Facebook?” This is our way of keeping every…