yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked examples: Definite integral properties 1 | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We want to evaluate the definite integral from 3 to 3 of f of x dx. We're given the graph of f of x and of y equals f of x, and the area between f of x and the x-axis over different intervals.

Well, when you look at this, you actually don't even have to look at this graph over here because, in general, if I have the definite integral of any function f of x dx from, let's say, a to the same value, from one value to the same value, this is always going to be equal to zero. We're going from three to three; we could be going from negative pi to negative pi. It's always going to be zero. One way to think about it is we're starting and stopping here at three, so we're not capturing any area.

Let's do another one. Here, we want to find the definite integral from 7 to 4 of f of x dx. So we want to go from 7 to 4. You might be tempted to say, "Okay, well, look, the area between f of x and the x-axis is 2, so maybe this thing is 2." But the key realization is this area only applies when you have the lower bound as the lower bound and the higher value as the higher bound.

So, the integral from 4 to 7 of f of x dx—this thing, this thing is equal to 2. This thing is depicting that area right over there. So what about this where we've switched it? Instead of going from four to seven, we're going from seven to four. The key realization is if you switch the bounds—and this is a key definite integral property—this is going to give you the negative value.

So, this is going to be equal to the negative of the integral from 4 to 7 of f of x dx. Now, that is this area; f of x is above the x-axis; it's a positive area. So, this thing right over here is going to evaluate to positive 2, but we have that negative out front. So, our original expression would evaluate to negative 2.

More Articles

View All
What is a Fourier Series? (Explained by drawing circles) - Smarter Every Day 205
What up? Today we’re gonna talk about waves. This is a circle, you probably knew that. If we were to turn this circle on and watch it go up and down and up and down and trace that motion out, you get what’s called a sine wave, which you know to be importa…
Chasing Microbes: The Secret Superheroes of Our Planet | National Geographic
There are places all over the world where methane is coming out of the seafloor. This is kind of concerning because methane is a very strong greenhouse gas. We think a lot about carbon dioxide heating up the planet, but methane is about 25 times worse. An…
Why Invisibility is Power | Priceless Benefits of Being Invisible
In today’s society, an individual’s success seems increasingly synonymous with ‘relevance.’ How much attention do you draw to yourself? How much are people talking about you on social media? How much exposure do you have on Twitter? How many followers on …
Proof: parallel lines have the same slope | High School Math | Khan Academy
What I want to do in this video is prove that parallel lines have the same slope. So let’s draw some parallel lines here. So that’s one line, and then let me draw another line that is parallel to that. I’m claiming that these are parallel lines. Now I’m …
Epic Mountain Climb Proves “Exploration Is Not Dead” | Exposure
This was old school, real turn of the century Adventure. It was everything that exploration and Adventure is and can be, and those elements that we’ve lost along the way. We wanted an anti-Everest, and we really got an anti-Everest. I mean, Mar, the north…
Long Distance KISSING and more! LÜT #22
Starry night socks and a gun that shoots ketchup onto your food. It’s episode 22 of LÜT. First, let’s break the ice… or let the ice do the breaking itself as a hammer. Of course, this hammer lets you open bottles. When you pour out the contents, be sure i…