yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked examples: Definite integral properties 1 | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We want to evaluate the definite integral from 3 to 3 of f of x dx. We're given the graph of f of x and of y equals f of x, and the area between f of x and the x-axis over different intervals.

Well, when you look at this, you actually don't even have to look at this graph over here because, in general, if I have the definite integral of any function f of x dx from, let's say, a to the same value, from one value to the same value, this is always going to be equal to zero. We're going from three to three; we could be going from negative pi to negative pi. It's always going to be zero. One way to think about it is we're starting and stopping here at three, so we're not capturing any area.

Let's do another one. Here, we want to find the definite integral from 7 to 4 of f of x dx. So we want to go from 7 to 4. You might be tempted to say, "Okay, well, look, the area between f of x and the x-axis is 2, so maybe this thing is 2." But the key realization is this area only applies when you have the lower bound as the lower bound and the higher value as the higher bound.

So, the integral from 4 to 7 of f of x dx—this thing, this thing is equal to 2. This thing is depicting that area right over there. So what about this where we've switched it? Instead of going from four to seven, we're going from seven to four. The key realization is if you switch the bounds—and this is a key definite integral property—this is going to give you the negative value.

So, this is going to be equal to the negative of the integral from 4 to 7 of f of x dx. Now, that is this area; f of x is above the x-axis; it's a positive area. So, this thing right over here is going to evaluate to positive 2, but we have that negative out front. So, our original expression would evaluate to negative 2.

More Articles

View All
Meet Madeline, the Robot Tamer | Short Film Showcase
[Music] I’m really passionate about inventing better ways to communicate with machines that can make things. For a long time, industrial robots have been the culprit of automation and replacing human labor. Basically, all the easy tasks to automate have …
Interpreting equations graphically | Mathematics III | High School Math | Khan Academy
Let F of x = 3x - 5 and g of x = x^3 - 4x^2 + x + 6. The graphs of y = F of x and y = G of x are shown below, and we see them right over here. This y = F of x is in, that is, in that purplish color. Let me see if I can get that same purplish color so tha…
The Music of Physics | StarTalk
Now it turns out there happens to be a guy out there who wrote an entire book on the connection between physics and music. An entire book. His name is Stefon Alexander, and he’s standing by right now live on video call. You guys, you have him. Oh, go! He…
Competition is for Losers with Peter Thiel (How to Start a Startup 2014: 5)
All right, good afternoon. Uh, today’s speaker is Peter Thiel. Peter was the founder of PayPal and Palantir and Founders Fund, and has invested in, uh, most of the tech companies in Silicon Valley. And he’s going to talk about strategy and competition. Th…
The Rarity or Probability of a Miracle | The Story of God
How do you define a miracle? How rare does an event have to be before we would call it miraculous? One in a million? One in a billion? If a miraculous thing is something that happens one in a billion times, it happens all the time. Because with six billi…
Westworld , Ford about God and existence. [S02E07]
[Music] To see the world, rain of sand, heaven in a wild flower. Hold infinity in the palm of your hand and eternity in an hour. [Music] Robert: How are you alive? Bernard: Well, you’ve seen the company’s little undertaking. Do you think James Dallas w…