yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked examples: Definite integral properties 1 | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We want to evaluate the definite integral from 3 to 3 of f of x dx. We're given the graph of f of x and of y equals f of x, and the area between f of x and the x-axis over different intervals.

Well, when you look at this, you actually don't even have to look at this graph over here because, in general, if I have the definite integral of any function f of x dx from, let's say, a to the same value, from one value to the same value, this is always going to be equal to zero. We're going from three to three; we could be going from negative pi to negative pi. It's always going to be zero. One way to think about it is we're starting and stopping here at three, so we're not capturing any area.

Let's do another one. Here, we want to find the definite integral from 7 to 4 of f of x dx. So we want to go from 7 to 4. You might be tempted to say, "Okay, well, look, the area between f of x and the x-axis is 2, so maybe this thing is 2." But the key realization is this area only applies when you have the lower bound as the lower bound and the higher value as the higher bound.

So, the integral from 4 to 7 of f of x dx—this thing, this thing is equal to 2. This thing is depicting that area right over there. So what about this where we've switched it? Instead of going from four to seven, we're going from seven to four. The key realization is if you switch the bounds—and this is a key definite integral property—this is going to give you the negative value.

So, this is going to be equal to the negative of the integral from 4 to 7 of f of x dx. Now, that is this area; f of x is above the x-axis; it's a positive area. So, this thing right over here is going to evaluate to positive 2, but we have that negative out front. So, our original expression would evaluate to negative 2.

More Articles

View All
Anne Wojcicki : How to Build the Future
Today we are here with Anne Wojcicki, co-founder and CEO of 23andMe. Thank you very much. We always like to start with how you came up with the idea and the sort of the founding story of the company. So I was working on Wall Street. That doesn’t sound ve…
Hedonism: The Pursuit of Happiness
In 2012, Drake made a song titled “The Motto,” but what most people remember from it is “YOLO.” YOLO tells you to live in the moment, enjoy life you have today, and not worry too much about tomorrow, because at the end of the day, you only live once. Whil…
Encountering an Anaconda | Primal Survivor: Escape the Amazon | National Geographic
So how far are you coming from? I come from south. Okay, all the way south? Yeah. Coming and going to? Heading north. Heading north? Okay. Okay. Yeah, we are rounding up these horses. Oh yeah? Yeah, my horses had strayed from this wapan Roundup. T…
The photoelectric and photovoltaic effects | Physics | Khan Academy
If you shine particular kinds of light on certain metals, electrons will be ejected. We call this the photoelectric effect because light is photo, and electrons being ejected is electric. This was one of the key experiments that actually helped us discove…
Finding features of quadratic functions | Mathematics II | High School Math | Khan Academy
So I have three different functions here. I know they’re all called f, but we’ll just assume they are different functions. For each of these, I want to do three things. I want to find the zeros, and so the zeros are the input values that make the value of…
Khan Academy learning plans for school closures
The goal of this video is to introduce you to the idea of learning plans on Khan Academy, and I’m going to focus on a plan for sixth grade math. But what I’m talking about is as applicable to fourth grade math as it is to sixth grade math, as it is to som…