yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked examples: Definite integral properties 1 | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We want to evaluate the definite integral from 3 to 3 of f of x dx. We're given the graph of f of x and of y equals f of x, and the area between f of x and the x-axis over different intervals.

Well, when you look at this, you actually don't even have to look at this graph over here because, in general, if I have the definite integral of any function f of x dx from, let's say, a to the same value, from one value to the same value, this is always going to be equal to zero. We're going from three to three; we could be going from negative pi to negative pi. It's always going to be zero. One way to think about it is we're starting and stopping here at three, so we're not capturing any area.

Let's do another one. Here, we want to find the definite integral from 7 to 4 of f of x dx. So we want to go from 7 to 4. You might be tempted to say, "Okay, well, look, the area between f of x and the x-axis is 2, so maybe this thing is 2." But the key realization is this area only applies when you have the lower bound as the lower bound and the higher value as the higher bound.

So, the integral from 4 to 7 of f of x dx—this thing, this thing is equal to 2. This thing is depicting that area right over there. So what about this where we've switched it? Instead of going from four to seven, we're going from seven to four. The key realization is if you switch the bounds—and this is a key definite integral property—this is going to give you the negative value.

So, this is going to be equal to the negative of the integral from 4 to 7 of f of x dx. Now, that is this area; f of x is above the x-axis; it's a positive area. So, this thing right over here is going to evaluate to positive 2, but we have that negative out front. So, our original expression would evaluate to negative 2.

More Articles

View All
Life’s short
Life is short. I’m dying every minute at a time. Right? It’s a, it’s a— you, you. We’ve been dead for 13 and 12 billion years. That’s a lot! That’s how long from The Big Bang till now. The universe will be around 70 billion years. You’re around for 50, 70…
How To Build Discipline
Self-discipline is your ability to do the uncomfortable but important things when nobody’s forcing you to do it. The last part, that no one forcing you, is the thing that people struggle with the most. When you were a kid, your parents told you what to do…
Summer of Soul | National Geographic
(Fast-paced drumming music) [Man] What time is it? ♪ This is the dawning of the age of Aquarius ♪ “Summer of Soul” is about the Harlem Cultural Festival in 1969. With so many greats of music in the day, Tony Lawrence and Hal Tulchin came up with an ide…
Consumer credit unit overview | Teacher Resources | Financial Literacy | Khan Academy
Hi teachers, Welcome to the unit on consumer credit. So, just as a high level, this is going to cover everything from credit scores—what is it? How it’s able to give people who might give someone credit a sense of how likely you are to pay back that cred…
The 5 Investing Strategies to make the MOST Money
What’s up, you guys? It’s Graham here. So I think it’s pretty obvious if you invest your money, you want to make as much money back as you possibly can. Because there’s so many different ways to invest, I want to focus on the most important points that ar…
Wading for Change | Short Film Showcase | National Geographic
Foreign [Music] There’s a power in belief my family always used to say. Responder, believing is power. So when I would see magazines of, you know, white fly fishermen in Yellowstone, I did believe that it would be me one day. Leaving home for me has been …