yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Angular motion variables


3m read
·Nov 11, 2024

Things in the universe don't just shift around; they also rotate. And so what we're going to do in this video is start to think about rotations and rotational motion. I'm intentionally continuing to spin this because I find it hypnotic. But the question is, well, how do we start to quantify these things, measure them, and describe them so that we can predict what will happen?

Well, what if we introduce a notion of angular displacement? We have displacement, which is our shift in position, but what if you have a change in angle? That seems like it would describe something. For example, right here, my angle would be 0 radians, and then, if I move counterclockwise π/2 radians, now my angle is π/2. So why not define going from there to there as an angular displacement of π/2 radians? If I were to displace by π/2 again, I would go over here. If I go negative π radians, well, that would be just like that. Negative π/2 from there would get me right over there. That seems like a fairly intuitive thing.

You might be saying, why is positive counterclockwise, and why is negative clockwise? Well, that just tends to be the conventions that we use for angles. So there you have it. We've already built our foundation for describing rotational motion. We can have an idea of angular displacement—angular displacement—which we can define more formally just the way we just described it. We could say, well, look, this is going to be our change in angle.

So change in Greek letter delta and angle—we use the Greek letter theta, which we've been using since geometry or trigonometry class. Our angular displacement can be defined as your final angle minus your initial angle. We could say that this is a vector quantity because you can either go counterclockwise, in which case this is going to be a positive quantity, or you could go clockwise, in which case this is going to be a negative quantity.

Well, that's all nice and fair. But I know what some of you are thinking: it's nice to be able to see how much your angle has changed, but isn't it much more interesting to also describe how fast that angle is changing? For example, here it's changing quite slowly. Let's say it takes us three seconds to have an angular displacement of 2π. One Mississippi, two Mississippi, three Mississippi— that feels very different. A lot slower than if I did that in one second: one Mississippi, two.

So what if we were to have something that would describe our rate of change of angle? Well, we could borrow some terminology that we've used in the past. Instead of calling that velocity, we could call that angular velocity—angular velocity. And how would you define that? Pause this video; think about that.

Well, angular velocity, you could just say that is our change in angle over a certain amount of time. If I change 2π radians in 1 second, well, that's going to be a lot slower than if I change 2π radians in half a second. The letter we use for angular velocity, the convention, is the Greek letter omega, which looks like a fancy lowercase w. Or at least, this right over here is the lowercase omega, which we use for angular velocity. This too is a vector quantity because it's measuring a rate of another vector quantity.

So just to hit the point home, just to review it all, make it all gel in your mind: angular displacement is nothing more than our change in angle. If our change in angle is counterclockwise like this, it's going to be positive. So let's say an angular displacement—we might start here. We don't always start at 0 radians, so let's say we start at π/2. An angular displacement of π/4 would take us right over there. An angular displacement from there of negative π/2 might take us right over there.

And if we cared about angular velocity, if we said, "Hey, we are going to go π radians every second," well then that would be like this: it would be one second, two seconds, three seconds, four seconds. If we were to say we would do 2π radians every second, then that would be twice as fast in terms of angular velocity: one Mississippi, two Mississippi, three Mississippi, four Mississippi, five Mississippi.

So there you have it! In the next few videos and in the practice exercises on Khan Academy, we will get even more familiar with these ideas and see how powerful they are for describing rotational motion in the universe.

More Articles

View All
Best Doorstop EVER? -- LÜT #15
A tentacle dress and cheeseburgers flip flops. It’s episode 15 of LÜT. Keep your doors open with NeatoShop’s gross gutsy zombie doorstop. Or be a superhero with these hoodies. Look how serious he is. Keep your dog warm with this scarf. I mean, let’s talk…
2002 Berkshire Hathaway Annual Meeting (Full Version)
Here but a seconder or anybody would like to speak that motion might now work their way over to the microphone in zone one. Could we have a spotlight on where there it is? And that way when we get to that point of the program, if anybody that would like t…
Energy graphs for simple harmonic motion | Simple harmonic motion | AP Physics 1 | Khan Academy
What I have drawn here is a mass sitting on a frictionless surface that is attached to a spring that is attached to the wall. What we’re going to do is we’re going to compress the spring; we’re going to get the mass to position A. Right now it’s at positi…
Don Cheadle Visits Central Valley | Years of Living Dangerously
The episode that we’re shooting now is about California and how we’re seeing the effects of climate change here dramatically, with temperatures rising and the U.S. losing the snowpack. How that is having an effect on water specifically, and how the lack o…
Dividing 2-digit numbers by 2 digit-numbers | Grade 5 (TX TEKS) | Khan Academy
Let’s get a little bit of practice dividing with two-digit numbers. So, let’s start by trying to figure out what 92 divided by 23 is. Pause this video and see if you can figure that out. All right, now let’s work through this together. So, I am going to …
'This Is Karma, Ladies And Gentlemen!': Dana White Speaks During Trump Victory Celebration
We also have a Manda White who has done some job. He’s that tough guy. So Dana started UFC and, uh, came to me. Do you mind if I use your? Nobody wanted to give him a ring because they said it’s a rough sport—a little rough. I helped him out a little bit,…