yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Angular motion variables


3m read
·Nov 11, 2024

Things in the universe don't just shift around; they also rotate. And so what we're going to do in this video is start to think about rotations and rotational motion. I'm intentionally continuing to spin this because I find it hypnotic. But the question is, well, how do we start to quantify these things, measure them, and describe them so that we can predict what will happen?

Well, what if we introduce a notion of angular displacement? We have displacement, which is our shift in position, but what if you have a change in angle? That seems like it would describe something. For example, right here, my angle would be 0 radians, and then, if I move counterclockwise π/2 radians, now my angle is π/2. So why not define going from there to there as an angular displacement of π/2 radians? If I were to displace by π/2 again, I would go over here. If I go negative π radians, well, that would be just like that. Negative π/2 from there would get me right over there. That seems like a fairly intuitive thing.

You might be saying, why is positive counterclockwise, and why is negative clockwise? Well, that just tends to be the conventions that we use for angles. So there you have it. We've already built our foundation for describing rotational motion. We can have an idea of angular displacement—angular displacement—which we can define more formally just the way we just described it. We could say, well, look, this is going to be our change in angle.

So change in Greek letter delta and angle—we use the Greek letter theta, which we've been using since geometry or trigonometry class. Our angular displacement can be defined as your final angle minus your initial angle. We could say that this is a vector quantity because you can either go counterclockwise, in which case this is going to be a positive quantity, or you could go clockwise, in which case this is going to be a negative quantity.

Well, that's all nice and fair. But I know what some of you are thinking: it's nice to be able to see how much your angle has changed, but isn't it much more interesting to also describe how fast that angle is changing? For example, here it's changing quite slowly. Let's say it takes us three seconds to have an angular displacement of 2π. One Mississippi, two Mississippi, three Mississippi— that feels very different. A lot slower than if I did that in one second: one Mississippi, two.

So what if we were to have something that would describe our rate of change of angle? Well, we could borrow some terminology that we've used in the past. Instead of calling that velocity, we could call that angular velocity—angular velocity. And how would you define that? Pause this video; think about that.

Well, angular velocity, you could just say that is our change in angle over a certain amount of time. If I change 2π radians in 1 second, well, that's going to be a lot slower than if I change 2π radians in half a second. The letter we use for angular velocity, the convention, is the Greek letter omega, which looks like a fancy lowercase w. Or at least, this right over here is the lowercase omega, which we use for angular velocity. This too is a vector quantity because it's measuring a rate of another vector quantity.

So just to hit the point home, just to review it all, make it all gel in your mind: angular displacement is nothing more than our change in angle. If our change in angle is counterclockwise like this, it's going to be positive. So let's say an angular displacement—we might start here. We don't always start at 0 radians, so let's say we start at π/2. An angular displacement of π/4 would take us right over there. An angular displacement from there of negative π/2 might take us right over there.

And if we cared about angular velocity, if we said, "Hey, we are going to go π radians every second," well then that would be like this: it would be one second, two seconds, three seconds, four seconds. If we were to say we would do 2π radians every second, then that would be twice as fast in terms of angular velocity: one Mississippi, two Mississippi, three Mississippi, four Mississippi, five Mississippi.

So there you have it! In the next few videos and in the practice exercises on Khan Academy, we will get even more familiar with these ideas and see how powerful they are for describing rotational motion in the universe.

More Articles

View All
Creativity break: what are some new ways of thinking about problem solving? | Khan Academy
[Music] We have the opportunity to work together with a variety of different voices, colleagues from all over the world who have different strengths that they bring, different perspectives that they bring about life and about how the world operates. Only …
Electronegativity and bond type | States of matter | High school chemistry | Khan Academy
Electro negativity is probably the most important concept to understand in organic chemistry. We’re going to use a definition that Linus Pauling gives in his book “The Nature of the Chemical Bond.” So, Linus Pauling says that electron negativity refers to…
The BEST ways to invest your first $1000
What’s up you guys? It’s Graham here. So this has got to be one of my most requested videos, especially for people that are just starting out or don’t have a lot of money saved up. That is how to invest your first $1,000. This amount, when you’re just st…
Sam Altman on Choosing Projects, Creating Value, and Finding Purpose
Alright, the return of same moment! How’s it going? Nice to be back, right? How are things? Good! This is good. You know YC is gonna be huge next batch. Yeah! Interviewed like more than a thousand companies. I’m saying Open has been going really well. Exc…
The Apple Vision Pro Was Always Doomed to Fail
Imagine you just spent $4,000 on an Apple Vision Pro. You excitedly bring it home and set it down on your coffee table. As you open the premium-feeling Apple packaging, the smell of the fresh plastic and metal fills you with a familiar joy. You strap on …
Filming Cliff-Jumping Geese: On Location | Hostile Planet
The animals who are filmed for “Hostile Planet” have to survive in incredibly tough conditions. But they’re adapted to it. The crew, on the other hand, that’s a whole different ball game. RENEE GODFREY: Making a series like “Hostile Planet” wasn’t simple…