yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Using the reaction quotient to predict a pressure change | Khan Academy


3m read
·Nov 11, 2024

A one liter reaction vessel contains 1.2 moles of carbon monoxide, 1.5 moles of hydrogen gas, and 2.0 moles of methanol gas. How will the total pressure change as the system approaches equilibrium at constant temperature?

So, our carbon monoxide is reacting with our hydrogen in a one to two ratio to give us methanol, and this reaction is reversible. We also know the equilibrium constant for this reaction is 14.5 at some temperature, and we know that the temperature is staying constant.

So, we are going to break this problem up into two parts. In part one, we're going to try to figure out, using the reaction quotient, whether our system is at equilibrium or not.

For this reaction, our reaction quotient ( Q ) is the product concentration ( [CH_3OH] ) or methanol, divided by the concentration of our hydrogen gas squared, because of that stoichiometric coefficient. In the denominator, we have our carbon monoxide concentration.

We can calculate ( Q ) by plugging in the concentrations of these at this particular moment in time, and we can calculate the concentrations using the volume of the vessel, which is 1 liter, and the mole quantities. We know that concentration is just moles divided by volume. Since we're dividing everything by one, the initial concentrations will be the same as the number of moles.

So, if you write that out for carbon monoxide, the initial concentration is 1.2 M; for hydrogen, it's 1.5 M; and for methanol, it is 2.0 M.

Now we can plug these concentrations into our expression for ( Q ), and then we get in our numerator 2.0, and our denominator is ( (1.5^2) \times 1.2 ). If we plug this all into our calculators, what I got is that our ( Q ) for this particular moment in time, with these concentrations, is 0.74.

So, this tells us, first of all, we know that ( Q ) is not equal to ( K_c ). So that means we are not at equilibrium, not at equilibrium, which means that our pressures are indeed going to change because the system is going to try to reach equilibrium.

The second thing we can do using the reaction quotient is figure out how the concentrations will change. Now that we know our reaction quotient ( Q_c ) is less than ( K ), we can visualize this on a number line.

If we look at all possible values of ( Q ), we know that when ( Q ) is zero, we have all reactants; when ( Q ) is infinitely large, we have all products, and then we have all of the possible values in between. What we're really worried about here is just looking at the relative value of ( Q ) and ( K ) and seeing how the reaction concentrations are going to shift.

So, ( Q ) we can put on a number line is somewhere around here, and ( K ) is 14.5, so we'll say it's somewhere around here. This is our ( Q ), and this is our ( K ). We can see that ( Q ) is less than ( K ) on our number line, and so what's going to happen is, in order to reach equilibrium, our concentrations are going to shift to the right to get ( Q ) closer to ( K ).

This means what's going to happen is the reaction is going to shift to favor making more products. So, if we look back at the balanced reaction, what's going to happen here is it's going to shift to favor the products.

So, I'm making that top arrow a little bit more bold, and to tie this into what the problem wants to know, we can figure out how the shift to make more products will affect the total pressure.

Total pressure for a system that has a bunch of gas molecules in it—we know that total pressure is related to the moles, the moles of gas in the system. So since we're shifting to favor the reactants, and on the reactant side we are making one mole of gas and we're starting with three moles of reactant gas, we're favoring the side that has fewer gas molecules.

So that means as we shift to favor the products, we're going to reduce the number of gas molecules in the system, and that's going to reduce our ( P_{total} ).

So, the answer is that ( P_{total} ) is going to decrease as our reaction approaches equilibrium, and that is because our reaction quotient ( Q ) is less than ( K ).

More Articles

View All
Grammatical person and pronouns | The parts of speech | Grammar | Khan Academy
Serious question, Grimian: What’s the difference between me and you? Uh, well, in order to get… I mean, I don’t mean that, you know, in a snarky way. I mean that in like a conceptual way. What’s the difference? Uh, in terms of these two pronouns, what’s s…
Making $2500 Per Day with a Luxury Dog Hotel | Undercover Millionaire
What’s up you guys? It’s Graham here, and I’m on a mission to find the most unique ways to make money. Today, I think I found it. Hi, my name is Josh. I’m 21 years old. My girlfriend, Cara, and I make $2,500 a day running a Doggy Daycare. Zumies is a dog…
How Does A Sailboat Actually Work?
[Applause] So my question to you is, uh, uh, let’s say the wind is coming from over there. I want you to position the boat in whatever direction you think will make it go the fastest. How would you set it up? You can set the sail how you want, something l…
Homeroom with Sal & Linda Darling-Hammond - Thursday, August 20
Hi everyone, Sal here from Khan Academy. Welcome to our homeroom live stream. I’m very excited about the conversation we’re going to have with Linda Darling-Hammond. Before we jump into that, I’ll give my standard announcements first. A reminder that Kha…
Are the Rich Screwing Us Over? | Marxism Explored
What if the world was more equal in how we shared its resources? What if workers could truly enjoy the fruits of their labor rather than seeing it claimed by a few at the top? Imagine if all workers own the means of production and share in the profits, in…
Growing Up Transgender and Mormon | Short Film Showcase
Wake up! Yay! Hi, my name is Eddie, little Eddie H. I’m thinking, what’s the rest of my name? There’s Eddie boy, there’s Eddie boy. Okay, should I stop? Then, that’s how I get ready every morning. Tada! This is my house. This is 8:51, uh, 851 and A2. Sor…