yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Using the reaction quotient to predict a pressure change | Khan Academy


3m read
·Nov 11, 2024

A one liter reaction vessel contains 1.2 moles of carbon monoxide, 1.5 moles of hydrogen gas, and 2.0 moles of methanol gas. How will the total pressure change as the system approaches equilibrium at constant temperature?

So, our carbon monoxide is reacting with our hydrogen in a one to two ratio to give us methanol, and this reaction is reversible. We also know the equilibrium constant for this reaction is 14.5 at some temperature, and we know that the temperature is staying constant.

So, we are going to break this problem up into two parts. In part one, we're going to try to figure out, using the reaction quotient, whether our system is at equilibrium or not.

For this reaction, our reaction quotient ( Q ) is the product concentration ( [CH_3OH] ) or methanol, divided by the concentration of our hydrogen gas squared, because of that stoichiometric coefficient. In the denominator, we have our carbon monoxide concentration.

We can calculate ( Q ) by plugging in the concentrations of these at this particular moment in time, and we can calculate the concentrations using the volume of the vessel, which is 1 liter, and the mole quantities. We know that concentration is just moles divided by volume. Since we're dividing everything by one, the initial concentrations will be the same as the number of moles.

So, if you write that out for carbon monoxide, the initial concentration is 1.2 M; for hydrogen, it's 1.5 M; and for methanol, it is 2.0 M.

Now we can plug these concentrations into our expression for ( Q ), and then we get in our numerator 2.0, and our denominator is ( (1.5^2) \times 1.2 ). If we plug this all into our calculators, what I got is that our ( Q ) for this particular moment in time, with these concentrations, is 0.74.

So, this tells us, first of all, we know that ( Q ) is not equal to ( K_c ). So that means we are not at equilibrium, not at equilibrium, which means that our pressures are indeed going to change because the system is going to try to reach equilibrium.

The second thing we can do using the reaction quotient is figure out how the concentrations will change. Now that we know our reaction quotient ( Q_c ) is less than ( K ), we can visualize this on a number line.

If we look at all possible values of ( Q ), we know that when ( Q ) is zero, we have all reactants; when ( Q ) is infinitely large, we have all products, and then we have all of the possible values in between. What we're really worried about here is just looking at the relative value of ( Q ) and ( K ) and seeing how the reaction concentrations are going to shift.

So, ( Q ) we can put on a number line is somewhere around here, and ( K ) is 14.5, so we'll say it's somewhere around here. This is our ( Q ), and this is our ( K ). We can see that ( Q ) is less than ( K ) on our number line, and so what's going to happen is, in order to reach equilibrium, our concentrations are going to shift to the right to get ( Q ) closer to ( K ).

This means what's going to happen is the reaction is going to shift to favor making more products. So, if we look back at the balanced reaction, what's going to happen here is it's going to shift to favor the products.

So, I'm making that top arrow a little bit more bold, and to tie this into what the problem wants to know, we can figure out how the shift to make more products will affect the total pressure.

Total pressure for a system that has a bunch of gas molecules in it—we know that total pressure is related to the moles, the moles of gas in the system. So since we're shifting to favor the reactants, and on the reactant side we are making one mole of gas and we're starting with three moles of reactant gas, we're favoring the side that has fewer gas molecules.

So that means as we shift to favor the products, we're going to reduce the number of gas molecules in the system, and that's going to reduce our ( P_{total} ).

So, the answer is that ( P_{total} ) is going to decrease as our reaction approaches equilibrium, and that is because our reaction quotient ( Q ) is less than ( K ).

More Articles

View All
Best Doorstop EVER? -- LÜT #15
A tentacle dress and cheeseburgers flip flops. It’s episode 15 of LÜT. Keep your doors open with NeatoShop’s gross gutsy zombie doorstop. Or be a superhero with these hoodies. Look how serious he is. Keep your dog warm with this scarf. I mean, let’s talk…
When Life Hurts, Stop Clinging to It | The Philosophy of Epictetus
Our very sense of wellbeing is at gunpoint when we cling to the fickle, unreliable outside world. Around two thousand years ago, Stoic philosopher Epictetus observed that people are burdened and dragged down because they tend to care about too many things…
Taking the Pulse of Our Planet | National Geographic
A lot of our mapping and a lot of our work is about discovery. Still, it’s still that way, but it’s equal now to measurements that will help people make better decisions at a scale that is really important. That scale might be the state of California scal…
Half the universe was missing... until now
This episode was sponsored by KiwiCo. More about them at the end of the show. Until recently, half the universe was missing or hidden or just… undetected. And no, I’m not talking about dark matter or dark energy, which make up 27 and 68 percent of our un…
Why I Sold My Stocks
What’s up grandma’s guys? Here, so as some of you know, I’ve been investing a large portion of my income into the stock market this year and I’ve been really fortunate that most of them have done well. But I also realized that there is a time and a place …
Before MARS: Behind the Scenes | MARS
Oh my God, back in action! I’m Andy Baker from the National Geographic Channel, and we are here in Ellenville, New York. We’re shooting a short film called “Before Mars,” which is essentially the prequel story to the global event series coming called “Mar…