yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Using the reaction quotient to predict a pressure change | Khan Academy


3m read
·Nov 11, 2024

A one liter reaction vessel contains 1.2 moles of carbon monoxide, 1.5 moles of hydrogen gas, and 2.0 moles of methanol gas. How will the total pressure change as the system approaches equilibrium at constant temperature?

So, our carbon monoxide is reacting with our hydrogen in a one to two ratio to give us methanol, and this reaction is reversible. We also know the equilibrium constant for this reaction is 14.5 at some temperature, and we know that the temperature is staying constant.

So, we are going to break this problem up into two parts. In part one, we're going to try to figure out, using the reaction quotient, whether our system is at equilibrium or not.

For this reaction, our reaction quotient ( Q ) is the product concentration ( [CH_3OH] ) or methanol, divided by the concentration of our hydrogen gas squared, because of that stoichiometric coefficient. In the denominator, we have our carbon monoxide concentration.

We can calculate ( Q ) by plugging in the concentrations of these at this particular moment in time, and we can calculate the concentrations using the volume of the vessel, which is 1 liter, and the mole quantities. We know that concentration is just moles divided by volume. Since we're dividing everything by one, the initial concentrations will be the same as the number of moles.

So, if you write that out for carbon monoxide, the initial concentration is 1.2 M; for hydrogen, it's 1.5 M; and for methanol, it is 2.0 M.

Now we can plug these concentrations into our expression for ( Q ), and then we get in our numerator 2.0, and our denominator is ( (1.5^2) \times 1.2 ). If we plug this all into our calculators, what I got is that our ( Q ) for this particular moment in time, with these concentrations, is 0.74.

So, this tells us, first of all, we know that ( Q ) is not equal to ( K_c ). So that means we are not at equilibrium, not at equilibrium, which means that our pressures are indeed going to change because the system is going to try to reach equilibrium.

The second thing we can do using the reaction quotient is figure out how the concentrations will change. Now that we know our reaction quotient ( Q_c ) is less than ( K ), we can visualize this on a number line.

If we look at all possible values of ( Q ), we know that when ( Q ) is zero, we have all reactants; when ( Q ) is infinitely large, we have all products, and then we have all of the possible values in between. What we're really worried about here is just looking at the relative value of ( Q ) and ( K ) and seeing how the reaction concentrations are going to shift.

So, ( Q ) we can put on a number line is somewhere around here, and ( K ) is 14.5, so we'll say it's somewhere around here. This is our ( Q ), and this is our ( K ). We can see that ( Q ) is less than ( K ) on our number line, and so what's going to happen is, in order to reach equilibrium, our concentrations are going to shift to the right to get ( Q ) closer to ( K ).

This means what's going to happen is the reaction is going to shift to favor making more products. So, if we look back at the balanced reaction, what's going to happen here is it's going to shift to favor the products.

So, I'm making that top arrow a little bit more bold, and to tie this into what the problem wants to know, we can figure out how the shift to make more products will affect the total pressure.

Total pressure for a system that has a bunch of gas molecules in it—we know that total pressure is related to the moles, the moles of gas in the system. So since we're shifting to favor the reactants, and on the reactant side we are making one mole of gas and we're starting with three moles of reactant gas, we're favoring the side that has fewer gas molecules.

So that means as we shift to favor the products, we're going to reduce the number of gas molecules in the system, and that's going to reduce our ( P_{total} ).

So, the answer is that ( P_{total} ) is going to decrease as our reaction approaches equilibrium, and that is because our reaction quotient ( Q ) is less than ( K ).

More Articles

View All
What types of jet we sell?
What kind of aircraft are we selling? First of all, there’s three groups of aviation: there is the commercial airlines, there’s the military, and then there’s general aviation. General aviation is broken down into a lot of different things: it’s agricultu…
Desire Is a Contract You Make to Be Unhappy
Desire is a contract you make with yourself to be unhappy until you get what you want. You start becoming disturbed because you want something, and then you work really hard to get that thing. You’re miserable in the meantime, and then when you get that t…
The Constitutional Convention | Period 3: 1754-1800 | AP US History | Khan Academy
In the United States today, we know our system of government so well that it hardly bears thinking about. We know that there’s a president who’s the head of the executive branch. There’s Congress, which is made up of the House of Representatives and the S…
McCulloch v. Maryland | Foundations of American democracy | US government and civics | Khan Academy
In this video, we’re going to talk about one of the most important U.S. Supreme Court cases that has helped determine the balance of power between the federal government and the states, and that’s McCulloch versus Maryland. So the year is 1816. After the…
Kevin O'Leary's Crypto Journey: Bear To Bull Shark | Bankless podcast
[Music] Kevin: Welcome to the show! How are you doing, man? Interviewer: Very good, thank you very much. Hey, so you are in Washington right now. That’s why you’re all suited up and looking spiffy. What’s the conversation in Washington? What are you the…
RECESSION ALERT: The 5 BEST Index Funds To Buy ASAP
What’s up, Graham? It’s guys here. So, I’ve noticed that people love to over complicate investing. Just buy into money puts expiring on May 12th over here, March in your portfolio. When the Fibonacci sequence falls below the 369-day moving average, you’ll…