yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Using the reaction quotient to predict a pressure change | Khan Academy


3m read
·Nov 11, 2024

A one liter reaction vessel contains 1.2 moles of carbon monoxide, 1.5 moles of hydrogen gas, and 2.0 moles of methanol gas. How will the total pressure change as the system approaches equilibrium at constant temperature?

So, our carbon monoxide is reacting with our hydrogen in a one to two ratio to give us methanol, and this reaction is reversible. We also know the equilibrium constant for this reaction is 14.5 at some temperature, and we know that the temperature is staying constant.

So, we are going to break this problem up into two parts. In part one, we're going to try to figure out, using the reaction quotient, whether our system is at equilibrium or not.

For this reaction, our reaction quotient ( Q ) is the product concentration ( [CH_3OH] ) or methanol, divided by the concentration of our hydrogen gas squared, because of that stoichiometric coefficient. In the denominator, we have our carbon monoxide concentration.

We can calculate ( Q ) by plugging in the concentrations of these at this particular moment in time, and we can calculate the concentrations using the volume of the vessel, which is 1 liter, and the mole quantities. We know that concentration is just moles divided by volume. Since we're dividing everything by one, the initial concentrations will be the same as the number of moles.

So, if you write that out for carbon monoxide, the initial concentration is 1.2 M; for hydrogen, it's 1.5 M; and for methanol, it is 2.0 M.

Now we can plug these concentrations into our expression for ( Q ), and then we get in our numerator 2.0, and our denominator is ( (1.5^2) \times 1.2 ). If we plug this all into our calculators, what I got is that our ( Q ) for this particular moment in time, with these concentrations, is 0.74.

So, this tells us, first of all, we know that ( Q ) is not equal to ( K_c ). So that means we are not at equilibrium, not at equilibrium, which means that our pressures are indeed going to change because the system is going to try to reach equilibrium.

The second thing we can do using the reaction quotient is figure out how the concentrations will change. Now that we know our reaction quotient ( Q_c ) is less than ( K ), we can visualize this on a number line.

If we look at all possible values of ( Q ), we know that when ( Q ) is zero, we have all reactants; when ( Q ) is infinitely large, we have all products, and then we have all of the possible values in between. What we're really worried about here is just looking at the relative value of ( Q ) and ( K ) and seeing how the reaction concentrations are going to shift.

So, ( Q ) we can put on a number line is somewhere around here, and ( K ) is 14.5, so we'll say it's somewhere around here. This is our ( Q ), and this is our ( K ). We can see that ( Q ) is less than ( K ) on our number line, and so what's going to happen is, in order to reach equilibrium, our concentrations are going to shift to the right to get ( Q ) closer to ( K ).

This means what's going to happen is the reaction is going to shift to favor making more products. So, if we look back at the balanced reaction, what's going to happen here is it's going to shift to favor the products.

So, I'm making that top arrow a little bit more bold, and to tie this into what the problem wants to know, we can figure out how the shift to make more products will affect the total pressure.

Total pressure for a system that has a bunch of gas molecules in it—we know that total pressure is related to the moles, the moles of gas in the system. So since we're shifting to favor the reactants, and on the reactant side we are making one mole of gas and we're starting with three moles of reactant gas, we're favoring the side that has fewer gas molecules.

So that means as we shift to favor the products, we're going to reduce the number of gas molecules in the system, and that's going to reduce our ( P_{total} ).

So, the answer is that ( P_{total} ) is going to decrease as our reaction approaches equilibrium, and that is because our reaction quotient ( Q ) is less than ( K ).

More Articles

View All
Tax implications of non-typical pay structures | Employment | Financial Literacy | Khan Academy
So let’s think about some of the pros and cons of self-employment. I’m going to make a column of pros and then in cons maybe a nice scary red over here. Alright, cons. I think a lot of folks, when they imagine working for themselves, they imagine, “Well…
Gaining the Trust of the Gorillas | Dian Fossey: Secrets in the Mist
KELLY STEWART: Dian Fossey was definitely a pioneer. I do not think that word has been overused. Before that, nobody had done a long-term study of gorillas. Nobody had studied them month after month and year after year. IAN REDMOND: She wanted to be the …
STOICISM | How To Deal With Insults
For a great part, stoicism teaches you how to reach a peaceful state of mind and being unmoved by things that are not up to you. One of these things are insults, which often lead to the receiver getting hurt, angry, and even resentful. The thing is, what …
Estimating multi-digit addition and subtraction word problems | Grade 5 (TX TEKS) | Khan Academy
We’re told Minley has 158,159 flight points. About how many total flight points does Minley have now? So why don’t you pause this video and have a go at it? And remember, they don’t want you to figure out the exact number; they just say about how many. So…
Reasons Not to Have Sex
In most modern-day societies, the idea of not having sex may sound preposterous. After all, isn’t physical intimacy one of the key ingredients of a healthy and fulfilling life? Well, if that’s the case, then we stumble upon a problem: as the visibility of…
Charlie Munger loads up on Alibaba Stock!
Holy smokes, guys! This is pretty crazy. Charlie Munger has just released the 13F4 for the Daily Journal Corp, and he is buying more Alibaba. Honestly, I shouldn’t be surprised by this, but I am. The reason is because he first bought Alibaba back in Q1 20…