yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example exercise using limit flow chart


3m read
·Nov 11, 2024

In a previous video, we introduced this flowchart that helps us think about what strategies to use when trying to determine a limit of a function as it approaches a point. What we're going to do in this video is now try to apply that in several example exercises.

So, the first question they say, based on the process in the flowchart, let's try to find the limit as x approaches 3 of f of x for f of x is equal to this business. What are the steps that we should go through? They have these various steps. You might say, what is a, b, c, d, and a? Well, if you go back to the original flow chart, you see this is a, this is b, this is c, this is d, etcetera, etcetera.

So, let's just first try to substitute, see if we can get a value for f of 3. If f of 3 works, then we are essentially done because this is not some strange exotic function; it seems like it's continuous if function around x equals 3, if f 3 exists. So, let's try it out.

So, we're going to have f of 3 is equal to the square root of, let's see, 6 minus 5, 2 times 3 minus 5 minus 1 over 3 minus 3. In the numerator here, we get 0 because this is 1 minus 1. So this is going to be equal to 0 over 0. The first thing that happens is we fall into indeterminate form.

So, the first step is going to be c. Now, the next thing that I would do, because we have a radical expression here, is to see if I can take a conjugate. So, it's going to likely be we're definitely going to have c first, then we're going to try e, and frankly, that's the only choice that has that. But let's actually see if that actually works: c, e, b.

So, let me multiply this expression times a conjugate, so square root of 2x minus 5 minus 1 over x minus 3 times square root of 2x minus 5 plus 1. That's the conjugate here over square root of 2x minus 5 plus 1.

This is going to be equal to see this numerator. Square root of 2x minus 5 squared is going to be 2x minus 5, and then you're going to have my negative; you have a minus 1 squared, which is going to be minus 1. All of that over x minus 3 times square root of 2x minus 5 plus 1.

Let's see this stuff up here. You can rewrite as 2x minus 6, which is the same thing as 2 times x minus 3, and so those cancel out nicely. So, let's see, this is going to be equal to 2 over square root of 2x minus 5 plus 1.

Now, let's try to evaluate this when x equals 3. Well, if we do that, we're going to get 2 over, so this is going to be 6 minus 5, the square root, which is 1 plus 1. So it's 2 over 2, which is equal to 1.

So then, we were able to evaluate it, and we actually got a value. So, we feel pretty good that we're done. We went from finding indeterminate form, taking the conjugate, and then being able to evaluate it.

Let me just show that right over here. When we immediately tried to evaluate it, we got indeterminate form. We recognized that it was a radical, that it was a rational expression with a radical on top. So, hey, let's multiply by the conjugate. We did that, and then after we were able to simplify it with the conjugate, we tried to evaluate it again, and we were able to get a real number.

So, we feel pretty good that that is going to be the limit.

More Articles

View All
When and why extraneous solution happen
In other videos, we’ve already introduced the idea of an extraneous solution, where you go about solving an equation. You’re given an original equation, and you do a bunch of algebraic steps. Then you solve it and you get some solutions. What we’ve seen, …
Le Chȃtelier’s principle: Changing volume | Equilibrium | AP Chemistry | Khan Academy
The Chatelier’s principle says that if a stress is applied to a reaction mixture at equilibrium, the net reaction goes in the direction that relieves the stress. One possible stress that we could do is to change the volume on a reaction at equilibrium. L…
Inductor kickback 2 of 2
So the problem with allowing this spark to happen across here is if this is not a mechanical switch, we can build switches out of electronic devices as well. This is what we use transistors for, and a transistor is a rather small, delicate device. So if …
Climbing Asia’s Forgotten Mountain, Part 3 | Nat Geo Live
This might be one of the most beautiful camps I’ve ever… had the pleasure to stay at. (Hilaree laughing) (applause) Only at this camp at 18,200 feet, were we finally on our route which is totally insane. And we were only, maybe a thousand feet below the s…
Ask me anything with Sal Khan: April 21 | Homeroom with Sal
Hi everyone, Sal here from Khan Academy. Welcome to our daily homeroom livestream! For those of you who don’t know what this is or what Khan Academy is, Khan Academy is a not-for-profit with a mission of providing a free, world-class education for anyone,…
Climate Change Through Bill Nye’s Eyes | Nat Geo Live
So I just to talk briefly about me. I took one class as an elective from Carl Sagan, a long time ago. What he was talking about was something he a phrase that he loved: Comparative climatology. So we compared the climate of Mars with the climate of Venus …