yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions defined by definite integrals (accumulation functions) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

You've already spent a lot of your mathematical lives talking about functions. The basic idea is: give a valid input into a function, so a member of that function's domain, and then the function is going to tell you for that input what is going to be the corresponding output. We call that corresponding output f of x.

So, for example, there are many ways of defining functions. You could say something like f of x is equal to x squared. That means that whatever x, whatever you input into the function, the output is going to be that input squared. You could have something defined like this: f of x is equal to x squared if x is odd, and you could say it's equal to x to the third otherwise. Other y's. So if it's an odd integer, you just square it, but otherwise, for any other real number, you take it to the third power. This is a valid way of defining a function.

What we're going to do in this video is explore a new way, or potentially a new way for you, of defining a function, and that's by using a definite integral. But it's the same general idea. So what we have graphed here, this is the t-axis, this is the y-axis, and we have the graph of the function f. Or you could view this as the graph of y is equal to f of t.

Now, what I want, and this is another way of representing what outputs you might get for a given input here: if t is 1, f of t is 5; if t is 4, f of t is 3. But I'm now going to define a new function based on a definite integral of f of t. Let's define our new function—let's say g, let's call it g of x. Let's make it equal to the definite integral from negative 2 to x of f of t dt.

Now pause this video, really take a look at it. This might look really fancy, but what's happening here is given an input x, g of x is going to be based on what the definite integral here would be for that x. So we can set up a little table here to think about some potential values.

So let's say x, and let's say g of x right over here. So if x is 1, what is g of x going to be equal to? All right, so g of 1 is going to be equal to the definite integral going from negative 2—now x is going to be equal to 1 in this situation, that's what we're inputting into the function—so 1 is our upper bound of f of t dt.

And what is that equal to? Well, that's going to be the area under the curve and above the t-axis between t equals negative 2 and t equals 1. So it's going to be this area here. And since it's on a grid, we can actually figure this out. We can actually break this up into two sections.

This rectangular section is three wide and five high, so it has an area of 15 square units. And this little triangular section up here is two wide and one high—two times one times one half, area of a triangle—this is going to be another one. So that area is going to be equal to 16.

What if x is equal to two? What is g of 2 going to be equal to? Pause this video and try to figure that out. Well, g of 2 is going to be equal to the definite integral from negative 2—and now our upper bound is going to be our input into the function—to 2 of f of t dt.

So that's going to be going from here all the way now to here, and so it's the area we just calculated. It's all of this stuff which we figured out was 16 square units, plus another 1, 2, 3, 4, 5 square units. So, 16 plus 5, this is going to be equal to 21.

So hopefully that helps, and the key thing to appreciate here is that we can define valid functions by using definite integrals.

More Articles

View All
Parallel resistors (part 3) | Circuit analysis | Electrical engineering | Khan Academy
In this video, we’re going to talk even some more about parallel resistors. Parallel resistors are resistors that are connected end to end and share the same nodes. Here’s R1 and R2; they share the same nodes, that one and that one, and that means they sh…
The Reason I’m $1.8 Million In Debt
What’s up you guys? It’s Graham here. So, I really feel like this is something worth addressing given just how much misinformation there’s been surrounding a few of the recent videos that I made. Two of which really stand out the most. The first one is wh…
I See Dead People | Explorer
I’ve traveled to the remote Highlands of Sui Indonesia to witness the unusual customs of the people of Taja, who mix Christianity with ancient religious beliefs. Thank you for having me a part of this. Okay, thank you. I just came to visit. I just came t…
The NEW BAILOUT For ALL Investors | What you MUST Know
What’s up you guys, it’s Graham here. So today we’re going to be covering some really important information that the Federal Reserve just released. It’ll pretty much affect everybody watching; that includes people who want to invest, people who’ve been in…
How Pesticide Misuse Is Killing Africa's Wildlife | National Geographic
Throughout Africa, people are using poisons as weapons to kill wildlife, and pesticides are the most common ones. As human populations across the continent continue to grow, farmers and herders compete with animals for shrinking land and resources. Farmer…
Crashing Into Saturn: This Cassini Mission Is the Most Epic Yet | Short Film Showcase
Alone, Explorer on a mission to reveal the grandeur of Saturn, its rings and [Music] moons. After 20 years in space, NASA’s Cassini spacecraft is running out of fuel. And so, to protect the moon of Saturn that could have conditions suitable for life, a sp…