yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculus based justification for function increasing | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We are told the differentiable function h and its derivative h prime are graphed, and you can see it here. h is in blue, and then its derivative h prime is in this orange color. Four students were asked to give an appropriate calculus-based justification for the fact that h is increasing when x is greater than zero. Can you match the teacher's comments to the justifications?

So, before I even look at what the students wrote, you might say, "Hey, look, I can just look at this and see that h is increasing when x is greater than zero." But just by looking at the graph of h, that by itself is not a calculus-based justification. We're not using calculus; we're just using our knowledge of what it means for a graph to be increasing.

In order for it to be a calculus-based justification, we should use calculus in some way, so maybe use the derivative in some way. Now, you might recognize that a function is increasing if its derivative is positive. So before I even look at what the students said, what I would say, my calculus-based justification—and I wouldn't even have to see the graph of h—I would just have to see the graph of h prime, is to say, "Look, h prime is greater than zero; h prime is positive when x is greater than zero. If the derivative is positive, then that means that the slope of the tangent line is positive, and that means that the graph of the original function is going to be increasing."

Now let's see whether one of the students said that or what some of the other students wrote. So, can you match the teacher's comments to the justifications? One student wrote, "The derivative of h is increasing when x is greater than zero." So it is indeed the case that the derivative is increasing when x is greater than zero, but that's not the justification for why h is increasing.

For example, the derivative could be increasing while still being negative, in which case h would be decreasing. The appropriate justification is that h prime is positive—not that it's necessarily increasing, because you could be increasing and still not be positive. So let's see. I would say that this doesn't justify why h is increasing when x is greater than 0.

As the x values increase, the function values also increase. Well, that is a justification for why h is increasing, but that's not calculus-based. In no way are you using a derivative, so this isn't a calculus-based justification. It's above the x-axis! So this one... what are they—what is it? Are they talking about h, or are they talking about h prime? If they're saying that h prime is above the x-axis when x is greater than zero, then that would be a good answer. But this is just... you know, what is above the x-axis and over what interval?

So I would actually... let's scroll down a little bit. This looks like a good thing for the teacher to write: "Please use more precise language; this cannot be accepted as a correct justification."

And then finally, this last student wrote, "The derivative of h is positive when x is greater than zero," and it is indeed the case: if your derivative is positive, that means that your original function is going to be increasing over that interval. So kudos, you are correct!

More Articles

View All
Tagging Adorable, Nasty Little Penguins | Best Job Ever
One of the most consistent comments that I get is how adorable chinstrap penguins are. But every time you get near them, the very first thing that they do is projectile poop. They’re cantankerous; they tend to be very aggressive and just eat the food out …
BREAKING NEWS: President Donald Trump Signs His First Executive Orders At The Capitol
Great. We went to the helicopter. It was freezing. Sun is a little dece. Yeah, yes it is. So, what would you like us to do? Sign your official documents. Assume they’re going to be happy with these docs. Might be the tradition, sir. The first is 22 cabin…
How Solving this Medical Mystery Saved Lives | Nat Geo Explores
Not that long ago, we didn’t understand why we got sick. There was no internet, and doctors were basically guessing. But then, in the 19th century, a few scientists figured it out: germs. One of the scientists was Louis Pasteur. The milk, already pasteuri…
Uncle Tom's Cabin part 1
[Voiceover] Hey, Becca. [Voiceover] Hi, Kim. [Voiceover] Alright, so we’re here to talk about Uncle Tom’s Cabin, and I think this is such an interesting book because when Abraham Lincoln met Harriet Beecher Stowe, he said to her, “So you’re the little l…
Lunch On Board The Hot Tuna | Wicked Tuna: Outer Banks
We’re bite chasers today. The strategy today is going to be tackle the guy with the ball. If we hear someone’s marking or someone’s getting bit, we’re beelining right for them. Right now, the clock is ticking. Whoever’s on the meat is getting mugged today…
Debunked: Making Music With Cars (Bootboxing and Techno Jeep)
I saw a couple of videos in the last few months through boxing, featuring snobs gorillas and Julian Smith technology original. Both of them featured cars being played by a group of people. The people appeared to be manipulating various parts of the cars i…