yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculus based justification for function increasing | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We are told the differentiable function h and its derivative h prime are graphed, and you can see it here. h is in blue, and then its derivative h prime is in this orange color. Four students were asked to give an appropriate calculus-based justification for the fact that h is increasing when x is greater than zero. Can you match the teacher's comments to the justifications?

So, before I even look at what the students wrote, you might say, "Hey, look, I can just look at this and see that h is increasing when x is greater than zero." But just by looking at the graph of h, that by itself is not a calculus-based justification. We're not using calculus; we're just using our knowledge of what it means for a graph to be increasing.

In order for it to be a calculus-based justification, we should use calculus in some way, so maybe use the derivative in some way. Now, you might recognize that a function is increasing if its derivative is positive. So before I even look at what the students said, what I would say, my calculus-based justification—and I wouldn't even have to see the graph of h—I would just have to see the graph of h prime, is to say, "Look, h prime is greater than zero; h prime is positive when x is greater than zero. If the derivative is positive, then that means that the slope of the tangent line is positive, and that means that the graph of the original function is going to be increasing."

Now let's see whether one of the students said that or what some of the other students wrote. So, can you match the teacher's comments to the justifications? One student wrote, "The derivative of h is increasing when x is greater than zero." So it is indeed the case that the derivative is increasing when x is greater than zero, but that's not the justification for why h is increasing.

For example, the derivative could be increasing while still being negative, in which case h would be decreasing. The appropriate justification is that h prime is positive—not that it's necessarily increasing, because you could be increasing and still not be positive. So let's see. I would say that this doesn't justify why h is increasing when x is greater than 0.

As the x values increase, the function values also increase. Well, that is a justification for why h is increasing, but that's not calculus-based. In no way are you using a derivative, so this isn't a calculus-based justification. It's above the x-axis! So this one... what are they—what is it? Are they talking about h, or are they talking about h prime? If they're saying that h prime is above the x-axis when x is greater than zero, then that would be a good answer. But this is just... you know, what is above the x-axis and over what interval?

So I would actually... let's scroll down a little bit. This looks like a good thing for the teacher to write: "Please use more precise language; this cannot be accepted as a correct justification."

And then finally, this last student wrote, "The derivative of h is positive when x is greater than zero," and it is indeed the case: if your derivative is positive, that means that your original function is going to be increasing over that interval. So kudos, you are correct!

More Articles

View All
7 Tips for Motivating Middle School and High School Kids During Distance Learning
Hi everyone, thank you for joining us today on our webinar on seven tips for motivating middle school and high school kids during distance learning. My name is Diane Tiu, and I’ll be kicking us off today as well as moderating our Q&A portion of today’…
Shana Fisher at Startup School NY 2014
Hello. I’m Kat Manalac, and I am a partner at Y Combinator. I’m excited to see you all here today, and I’m also excited to introduce you to Shana Fisher. Shana is the founder and managing partner of High Line Venture Partners, which is based here in New Y…
Safari Live - Day 234 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. This is why the inclement ride is such a firm favorite. If King Quito… [Music] it just looks ready for a fight. This is sti…
Peter Lynch Talks About His Secret to Success in the Stock Market
When I was writing Magellan, one out of every 100 Americans was in the fund. Yeah, these are people that five thousand dollars and ten thousand dollars was a huge deal too. So when the market went down, you felt really badly. I mean, it’s really the press…
The Beginner's Guide To Stoic Travel
When studying the ancient scriptures, we discover a love-hate relationship between the Stoics and travel. So, is there a Stoic way to travel? And how can Stoicism benefit those who engage in traveling? In this video, I want to present you the beginner’s g…
15 Hidden Behaviors of Incredibly Successful People
True success whisperers and incredibly successful people keep their actions private. These are 15 hidden behaviors only the truly successful do. Welcome to Alux. First stop: silent observation. Now, success stories often attribute victories to relentless…