yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculus based justification for function increasing | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We are told the differentiable function h and its derivative h prime are graphed, and you can see it here. h is in blue, and then its derivative h prime is in this orange color. Four students were asked to give an appropriate calculus-based justification for the fact that h is increasing when x is greater than zero. Can you match the teacher's comments to the justifications?

So, before I even look at what the students wrote, you might say, "Hey, look, I can just look at this and see that h is increasing when x is greater than zero." But just by looking at the graph of h, that by itself is not a calculus-based justification. We're not using calculus; we're just using our knowledge of what it means for a graph to be increasing.

In order for it to be a calculus-based justification, we should use calculus in some way, so maybe use the derivative in some way. Now, you might recognize that a function is increasing if its derivative is positive. So before I even look at what the students said, what I would say, my calculus-based justification—and I wouldn't even have to see the graph of h—I would just have to see the graph of h prime, is to say, "Look, h prime is greater than zero; h prime is positive when x is greater than zero. If the derivative is positive, then that means that the slope of the tangent line is positive, and that means that the graph of the original function is going to be increasing."

Now let's see whether one of the students said that or what some of the other students wrote. So, can you match the teacher's comments to the justifications? One student wrote, "The derivative of h is increasing when x is greater than zero." So it is indeed the case that the derivative is increasing when x is greater than zero, but that's not the justification for why h is increasing.

For example, the derivative could be increasing while still being negative, in which case h would be decreasing. The appropriate justification is that h prime is positive—not that it's necessarily increasing, because you could be increasing and still not be positive. So let's see. I would say that this doesn't justify why h is increasing when x is greater than 0.

As the x values increase, the function values also increase. Well, that is a justification for why h is increasing, but that's not calculus-based. In no way are you using a derivative, so this isn't a calculus-based justification. It's above the x-axis! So this one... what are they—what is it? Are they talking about h, or are they talking about h prime? If they're saying that h prime is above the x-axis when x is greater than zero, then that would be a good answer. But this is just... you know, what is above the x-axis and over what interval?

So I would actually... let's scroll down a little bit. This looks like a good thing for the teacher to write: "Please use more precise language; this cannot be accepted as a correct justification."

And then finally, this last student wrote, "The derivative of h is positive when x is greater than zero," and it is indeed the case: if your derivative is positive, that means that your original function is going to be increasing over that interval. So kudos, you are correct!

More Articles

View All
Nullius in Verba
The beginning of infinity is not an easy book to read. To some level, Deutsch could not but write for other physicists. He has a certain peer group that he respects and who respect him, and he has to meet them at their level. So, he has to write for other…
Bitcoin To $1,000,000 | Meet Kevin Pt 2
Gary Gensler, a few weeks ago, compared regulation in the cryptocurrency market to regulation in cars. When we finally had cars get regulated, we had stop signs, we had crosswalks, and traffic lights. Car adoption skyrocketed. Do you think the same thing …
6 Millionaire Habits I Wish I Knew At 20
What’s up you guys, it’s Graham here. So I know a lot of people say your 20s are the most transformative and influential years of your entire life, and I have to say it, but that is absolutely a load of truth. Because looking back over my last 10 years, I…
Simple and compound sentences | Syntax | Khan Academy
Hello Garans, hello Paige, hi David. I say hello to you, and I say hello to the Garans. That was an interesting thing to say. Yeah, it’s because there was a compound sentence. I see, so there’s this distinction made in grammar between simple and compound…
Kevin O'Leary Investment RuckPack featured on Bloomberg TV
There tell people first of all about Ruckpack. What is this? This company and product? Ruckpack is a peak performance nutrition shot, pure and simple. It’s good ingredients; it’s the things you need that your body needs to stay on top, to stay in peak per…
US Government and Civics Introduction
Hi, everyone, Sal Khan here. And I just wanted to invite you, or tell you a little bit about our course on US Government and Civics. The first question you might be wondering is why do I need to learn about government and civics? And what I would tell yo…