yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculus based justification for function increasing | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We are told the differentiable function h and its derivative h prime are graphed, and you can see it here. h is in blue, and then its derivative h prime is in this orange color. Four students were asked to give an appropriate calculus-based justification for the fact that h is increasing when x is greater than zero. Can you match the teacher's comments to the justifications?

So, before I even look at what the students wrote, you might say, "Hey, look, I can just look at this and see that h is increasing when x is greater than zero." But just by looking at the graph of h, that by itself is not a calculus-based justification. We're not using calculus; we're just using our knowledge of what it means for a graph to be increasing.

In order for it to be a calculus-based justification, we should use calculus in some way, so maybe use the derivative in some way. Now, you might recognize that a function is increasing if its derivative is positive. So before I even look at what the students said, what I would say, my calculus-based justification—and I wouldn't even have to see the graph of h—I would just have to see the graph of h prime, is to say, "Look, h prime is greater than zero; h prime is positive when x is greater than zero. If the derivative is positive, then that means that the slope of the tangent line is positive, and that means that the graph of the original function is going to be increasing."

Now let's see whether one of the students said that or what some of the other students wrote. So, can you match the teacher's comments to the justifications? One student wrote, "The derivative of h is increasing when x is greater than zero." So it is indeed the case that the derivative is increasing when x is greater than zero, but that's not the justification for why h is increasing.

For example, the derivative could be increasing while still being negative, in which case h would be decreasing. The appropriate justification is that h prime is positive—not that it's necessarily increasing, because you could be increasing and still not be positive. So let's see. I would say that this doesn't justify why h is increasing when x is greater than 0.

As the x values increase, the function values also increase. Well, that is a justification for why h is increasing, but that's not calculus-based. In no way are you using a derivative, so this isn't a calculus-based justification. It's above the x-axis! So this one... what are they—what is it? Are they talking about h, or are they talking about h prime? If they're saying that h prime is above the x-axis when x is greater than zero, then that would be a good answer. But this is just... you know, what is above the x-axis and over what interval?

So I would actually... let's scroll down a little bit. This looks like a good thing for the teacher to write: "Please use more precise language; this cannot be accepted as a correct justification."

And then finally, this last student wrote, "The derivative of h is positive when x is greater than zero," and it is indeed the case: if your derivative is positive, that means that your original function is going to be increasing over that interval. So kudos, you are correct!

More Articles

View All
The Sinking of the SS Robert J Walker | WW2 Hell Under the Sea
Christmas morning 1944, 218 days after leaving Germany, 160 miles southeast of Sydney, Australia. Corvette and Capitaine Heinrich Tim of the German U-boat U-862 has two torpedoes into an Allied freighter and has just fired another to finish it off. U-862’…
Red Button: You Live, Blue Button: Everyone Might Live
Hello, good morning! Hi, it’s been a while since I made a video about green beard altruism. Let’s not bury the lead. But, uh, it’s going to take a while to get there. There’s a puzzle that’s been going around social media for a while and recently boiled …
Clickbait is Unreasonably Effective
Can I tell you something I’m bad at? I am terrible at making clickbait. Up until two years ago, my most popular video was about a basketball being dropped from a dam with a bit of backspin. It takes off like a rocket and shoots out way further than you’d …
AIDS 101 | National Geographic
(Dramatic music) - [Narrator] About 37 million people around the world are currently living with AIDS, making the disease one of the worst pandemics in modern history. AIDS, or Acquired Immunodeficiency Syndrome, is a disease in which the human immune sys…
John Bogle on How to Build Wealth in the Stock Market
But I think the idea of buying and holding forever and not trying to make adjustments requires that you’ve gotten it right in the first place. That you can only hold tight if you’ve bought right, if you will. And that is to say, have an asset allocation t…
Elon Musk's Plan for the US National Debt.
Basically, we’re on a path to bankruptcy. America’s on a path to bankruptcy, so we have to cut government spending, or we’re just going to go bankrupt just like a person would. As we all know, recently, Donald Trump won the US election, and one person tha…