yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Decomposing shapes to find area (subtract) | Math | 3rd grade | Khan Academy


2m read
·Nov 11, 2024

What is the area of the shaded figure? So down here we have this green shaded figure, and it looks like a rectangle, except it has this square cut out in the middle.

So when we find its area, we can think of it exactly like that. We want to know how much space it covers; it covers this rectangle's amount of area with this square cut out.

So what we can do is find the area of the larger rectangle and then cut out or subtract the area of the square to see what's left in this shaded area.

So let's start by finding the area of this larger rectangle, and to do that we can look at the side lengths. It has side lengths of 9 and 8. To find the area of a rectangle, we can multiply the side lengths. So 9 times 8 is 72.

That means that this rectangle covers 72 square centimeters. This entire rectangular area covers 72 square centimeters. But now we need to cut out or subtract the area of this square because that's not part of our shaded figure. We need to cut that part out.

So to do that, we know the side lengths are four on the square. So we can think of this as four centimeters across. So we can divide it into four equal sections, and same going this way.

And then, if we connect these lines, what it will show us is that we have—it's not drawn perfect—but we have four rows of four square centimeters. Four times, we see four square centimeters. This top row: one, two, three, four, and so on, four rows.

So there are 16 square centimeters we need to cut out of the 72 of this entire rectangular area. We need to cut out or subtract 16 of these square centimeters.

So let's do that. We have 72 as the entire area, and then let's start subtracting. I subtract out 10 of them just because, for me, I like subtracting 10s because they're simpler.

So 4, 8, 10 of the square centimeters. Now we're down to an area of 62 left. And then, let's subtract those two more; it will get us to—subtract two more will get us to sixty.

And then there's four left to subtract in order to subtract all 16. So 60 minus four gets us to 56.

So the entire area of 72, we subtracted out these 16 square centimeters, leaves us with a final area of 56 square centimeters.

More Articles

View All
My Investing Plan For 2023 (How To Prepare)
What’s up, Graham? It’s guys here. So 2023 is probably going to be one of the most confusing years for investing. After all, stocks are the cheapest they’ve been in two years, but there’s a chance they could drop even further. Real estate has only starte…
Adding tenths to hundredths
So what we’re going to try to do in this video is add 7 tenths to 13 hundredths. Pause this video and see if you can figure what that is. All right, so this might be a little bit intimidating at first because we’re adding tenths here, seven tenths, and w…
Writing equations to represent geometric problems | Grade 8 (TX TEKS) | Khan Academy
We’re told the perimeter of the rectangle shown is 17x units. The area of the rectangle is 15x square units. Write an equation that represents the perimeter, and also write an equation that represents the area. So pause this video and see if you can writ…
Biogeochemical cycles | Ecology | Khan Academy
Talk a little bit about biogeochemical cycles. The term “biogeochemical” sounds very fancy, but really these are just cycles that involve different molecules that are essential for life and how they circulate through an ecosystem. And really, how they cir…
THE ONLY 5 CREDIT CARDS YOU WILL EVER NEED
What’s up, you guys? It’s Graham here. So, as some of you know, I have this weird fascination with credit cards and try to squeeze out the best rewards as possible. However, I realized that picking and choosing new credit cards every single month based o…
Is Success Luck or Hard Work?
During the COVID lockdown, this headline went viral: “Nearly half of men say they do most of the homeschooling… …three percent of women agree.” I bring this up not to debate who’s right, but because it’s a great example of something called egocentric bias…