yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is give ourselves some practice in the first step of u substitution, which is often the most difficult for those who are first learning it. That's recognizing when u substitution is appropriate and then defining an appropriate u.

So let's just start with an example here. Let's say we want to take the indefinite integral of (2x + 1) times the square root of (x^2 + x , dx). Does u substitution apply here? And if it does, how would you define that u? Pause the video and try to think about that.

Well, we just have to remind ourselves that u substitution is really trying to undo the chain rule. If we remind ourselves what the chain rule tells us, it says look, if we have a composite function, let's say (F(G(x))), and we take the derivative of that with respect to (x), that is going to be equal to the derivative of the outside function with respect to the inside function, so (f'(G(x))) times the derivative of the inside function.

So u substitution is all about, well, do we see a pattern like that inside the integral? Do we see a potential inside function (G(x)) where I see its derivative being multiplied? Well, we see that over here. If I look at (x^2 + x), if I make that the (u), what's the derivative of that?

Well, the derivative of (x^2 + x) is (2x + 1), so we should make that substitution. If we say (u) is equal to (x^2 + x), then we could say (\frac{du}{dx}), the derivative of (u) with respect to (x), is equal to (2x + 1).

If we treat our differentials like variables or numbers, we can multiply both sides by (dx), which is a little bit of hand-wavy mathematics, but it's appropriate here. So we could say (2x + 1) times (dx).

Now what's really interesting is here we have our (u) right over there. Notice we have our (2x + 1 , dx). In fact, it's not conventional to see an integral rewritten the way I'm about to write it, but I will.

I could rewrite this integral—you should really view this as the product of three things. Oftentimes, people just view the (dx) as somehow part of the integral operator, but you could rearrange it. This would actually be legitimate; you could say the integral of the square root of (x^2 + x) times (2x + 1 , dx).

And if you wanted to be really clear, you could even put all of those things in parentheses or something like that. So here, this is our (U), and this right over here is our (DU).

We could rewrite this as being equal to the integral of the square root of (U) because (x^2 + x) is (U), times (DU), which is much easier to evaluate. If you are still confused, you might recognize it if I rewrite this as (u^{\frac{1}{2}}) because now we could just use the reverse power rule to evaluate this.

Then, we would have to undo the substitution. Once we figure out what this antiderivative is, we would then reverse substitute the (X) expression back in for the (U).

More Articles

View All
A Discussion With Sal About Systemic Racism
Hi everyone, uh, Sal Khan here from Khan Academy. Welcome to our daily live stream. Uh, for those of y’all who are wondering what this is, you know, this is something we started several months ago as a way to keep us all connected during times of social d…
A Brief History of Dogs | National Geographic
Long before we raised livestock and grew crops, humans lived side by side with dogs. It’s widely accepted among scientists that dogs are descendants of wolves. In fact, their DNA is virtually identical. But how exactly did a fierce wild animal become our …
Tax multiplier, MPC, and MPS | AP Macroeconomics | Khan Academy
So in this video we’re going to revisit another super simple economy that only has a farmer and a builder on an island, and we’re going to review what we learned about the multiplier and the marginal propensity to consume. But we’re going to do it a littl…
Do You Have a Simian Line?
Does your hand look like my wife’s hand? Do your fingers fold down along two major lines, a distal and proximal crease? Most human hands do, but for about 15 percent of the population, it’s not that simple. For example, on my left hand, my distal crease …
Inside Japan’s Earthquake Simulator
This is the world’s largest earthquake simulator. It’s called E-Defense. Its huge shake table can support a 10-story building and then move it in all directions with the force of the world’s most destructive earthquakes. E-Defense has conducted more than …
The 2022 Recession: How To Prepare For The Next Market Crash
So over the past few years, we’ve been through a lot of hardship. No doubt it’s been pretty tough, so tough that the Federal Reserve has stepped in to wind up that money printer to help individuals and businesses get through such an uncertain and interrup…