yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is give ourselves some practice in the first step of u substitution, which is often the most difficult for those who are first learning it. That's recognizing when u substitution is appropriate and then defining an appropriate u.

So let's just start with an example here. Let's say we want to take the indefinite integral of (2x + 1) times the square root of (x^2 + x , dx). Does u substitution apply here? And if it does, how would you define that u? Pause the video and try to think about that.

Well, we just have to remind ourselves that u substitution is really trying to undo the chain rule. If we remind ourselves what the chain rule tells us, it says look, if we have a composite function, let's say (F(G(x))), and we take the derivative of that with respect to (x), that is going to be equal to the derivative of the outside function with respect to the inside function, so (f'(G(x))) times the derivative of the inside function.

So u substitution is all about, well, do we see a pattern like that inside the integral? Do we see a potential inside function (G(x)) where I see its derivative being multiplied? Well, we see that over here. If I look at (x^2 + x), if I make that the (u), what's the derivative of that?

Well, the derivative of (x^2 + x) is (2x + 1), so we should make that substitution. If we say (u) is equal to (x^2 + x), then we could say (\frac{du}{dx}), the derivative of (u) with respect to (x), is equal to (2x + 1).

If we treat our differentials like variables or numbers, we can multiply both sides by (dx), which is a little bit of hand-wavy mathematics, but it's appropriate here. So we could say (2x + 1) times (dx).

Now what's really interesting is here we have our (u) right over there. Notice we have our (2x + 1 , dx). In fact, it's not conventional to see an integral rewritten the way I'm about to write it, but I will.

I could rewrite this integral—you should really view this as the product of three things. Oftentimes, people just view the (dx) as somehow part of the integral operator, but you could rearrange it. This would actually be legitimate; you could say the integral of the square root of (x^2 + x) times (2x + 1 , dx).

And if you wanted to be really clear, you could even put all of those things in parentheses or something like that. So here, this is our (U), and this right over here is our (DU).

We could rewrite this as being equal to the integral of the square root of (U) because (x^2 + x) is (U), times (DU), which is much easier to evaluate. If you are still confused, you might recognize it if I rewrite this as (u^{\frac{1}{2}}) because now we could just use the reverse power rule to evaluate this.

Then, we would have to undo the substitution. Once we figure out what this antiderivative is, we would then reverse substitute the (X) expression back in for the (U).

More Articles

View All
Beat frequency | Physics | Khan Academy
What’s up, everybody? I want to talk to you about beat frequency, and to do so, let me talk to you about this air displacement versus time graph. So this is going to give you the displacement of the air molecules for any time at a particular location. So…
Alexander the Great takes power | World History | Khan Academy
Going to talk about one of the most famous conquerors in all of human history, and that is Alexander the Great. But before talking about all of the things that he conquered, let’s think about how he got started out, and in particular, how he’s able to con…
Meta's Creepy AI Celebrities
What if you were able to have your loved ones live on with you long after they’re gone, to hear their voice, experience their laugh, get their advice, and tell inside jokes that only the two of you know? If someone told you they could make that happen, wo…
Word problem subtracting fractions with like denominators
After a rainstorm, Lily measures the depth of several puddles in her backyard. She records her results in a table. So, here are three different puddles, and she measures the depth in inches. Then we’re asked: how much deeper was the puddle under the swin…
This Yacht Makes $150,000 Per Week (Here's How)
What’s up guys, it’s Graham here! So this has been the most luxurious week of my entire life, and if you’re curious what a hundred and fifty thousand dollars a week gets you in Croatia, wait no longer! “Graham, welcome onboard Ohana.” “Thank you, I’m ha…
Long term economic profit for monopolistic competition | Microeconomics | Khan Academy
We have already thought about the demand curves for perfect competition and monopolies and the types of economic profit that might result in. In this video, we’re going to focus on something in between, which we’ve talked about in previous videos, which i…