yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is give ourselves some practice in the first step of u substitution, which is often the most difficult for those who are first learning it. That's recognizing when u substitution is appropriate and then defining an appropriate u.

So let's just start with an example here. Let's say we want to take the indefinite integral of (2x + 1) times the square root of (x^2 + x , dx). Does u substitution apply here? And if it does, how would you define that u? Pause the video and try to think about that.

Well, we just have to remind ourselves that u substitution is really trying to undo the chain rule. If we remind ourselves what the chain rule tells us, it says look, if we have a composite function, let's say (F(G(x))), and we take the derivative of that with respect to (x), that is going to be equal to the derivative of the outside function with respect to the inside function, so (f'(G(x))) times the derivative of the inside function.

So u substitution is all about, well, do we see a pattern like that inside the integral? Do we see a potential inside function (G(x)) where I see its derivative being multiplied? Well, we see that over here. If I look at (x^2 + x), if I make that the (u), what's the derivative of that?

Well, the derivative of (x^2 + x) is (2x + 1), so we should make that substitution. If we say (u) is equal to (x^2 + x), then we could say (\frac{du}{dx}), the derivative of (u) with respect to (x), is equal to (2x + 1).

If we treat our differentials like variables or numbers, we can multiply both sides by (dx), which is a little bit of hand-wavy mathematics, but it's appropriate here. So we could say (2x + 1) times (dx).

Now what's really interesting is here we have our (u) right over there. Notice we have our (2x + 1 , dx). In fact, it's not conventional to see an integral rewritten the way I'm about to write it, but I will.

I could rewrite this integral—you should really view this as the product of three things. Oftentimes, people just view the (dx) as somehow part of the integral operator, but you could rearrange it. This would actually be legitimate; you could say the integral of the square root of (x^2 + x) times (2x + 1 , dx).

And if you wanted to be really clear, you could even put all of those things in parentheses or something like that. So here, this is our (U), and this right over here is our (DU).

We could rewrite this as being equal to the integral of the square root of (U) because (x^2 + x) is (U), times (DU), which is much easier to evaluate. If you are still confused, you might recognize it if I rewrite this as (u^{\frac{1}{2}}) because now we could just use the reverse power rule to evaluate this.

Then, we would have to undo the substitution. Once we figure out what this antiderivative is, we would then reverse substitute the (X) expression back in for the (U).

More Articles

View All
Talking With Attenborough
[Music] Hey, Vau! Michael here. This is the song of the Kawaii oo bird. In 1987, this species of bird became extinct; there are no more. But before the last living one died, its song was recorded. Ed, this is that song. It is the song of an endling, the …
Transforming exponential graphs | Mathematics III | High School Math | Khan Academy
We’re told the graph of y = 2^x is shown below. All right, which of the following is the graph of y = 2^(-x) - 5? So there’s two changes here: instead of 2^x, we have 2^(-x) and then we’re not leaving that alone; we then subtract five. So let’s take them…
10 POWERFUL STOIC TECHNIQUES TO INCREASE YOUR INTELLIGENCE (MUST WATCH) | STOICISM INSIGHTS
Seneca once profoundly said, “Think about that for a second.” Here we are on this incredible journey called life, filled with endless possibilities, seeking to live fully, deeply, and meaningfully. But what does it truly mean to live well? As you join me …
Held at gunpoint while selling a private jet!
The first jet I ever sold in my life, I was held at gunpoint three feet away from me. It’s a long story. The first time I saw the jet, I was 23 years old. I flew to America, to North Carolina. We were signing a deal with the Venezuelan buyer. He had two …
15 Concerns Rich People Take Seriously
You know, there are some things that rich people take way more seriously than everyone else. So we put together a list that goes up in importance as we go through it. Here are 15 concerns rich people take seriously, what goes on to social media and when. …
Sal Khan chats with Google CEO Sundar Pichai
It’s huge treat to have Sundar Pichai, CEO of Google, here. And you know I will give a little bit of a preamble more than I normally do. I think a lot of the team knows this, but it’s always worth reminding the team we wouldn’t be here on many levels if i…