yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we're going to do in this video is give ourselves some practice in the first step of u substitution, which is often the most difficult for those who are first learning it. That's recognizing when u substitution is appropriate and then defining an appropriate u.

So let's just start with an example here. Let's say we want to take the indefinite integral of (2x + 1) times the square root of (x^2 + x , dx). Does u substitution apply here? And if it does, how would you define that u? Pause the video and try to think about that.

Well, we just have to remind ourselves that u substitution is really trying to undo the chain rule. If we remind ourselves what the chain rule tells us, it says look, if we have a composite function, let's say (F(G(x))), and we take the derivative of that with respect to (x), that is going to be equal to the derivative of the outside function with respect to the inside function, so (f'(G(x))) times the derivative of the inside function.

So u substitution is all about, well, do we see a pattern like that inside the integral? Do we see a potential inside function (G(x)) where I see its derivative being multiplied? Well, we see that over here. If I look at (x^2 + x), if I make that the (u), what's the derivative of that?

Well, the derivative of (x^2 + x) is (2x + 1), so we should make that substitution. If we say (u) is equal to (x^2 + x), then we could say (\frac{du}{dx}), the derivative of (u) with respect to (x), is equal to (2x + 1).

If we treat our differentials like variables or numbers, we can multiply both sides by (dx), which is a little bit of hand-wavy mathematics, but it's appropriate here. So we could say (2x + 1) times (dx).

Now what's really interesting is here we have our (u) right over there. Notice we have our (2x + 1 , dx). In fact, it's not conventional to see an integral rewritten the way I'm about to write it, but I will.

I could rewrite this integral—you should really view this as the product of three things. Oftentimes, people just view the (dx) as somehow part of the integral operator, but you could rearrange it. This would actually be legitimate; you could say the integral of the square root of (x^2 + x) times (2x + 1 , dx).

And if you wanted to be really clear, you could even put all of those things in parentheses or something like that. So here, this is our (U), and this right over here is our (DU).

We could rewrite this as being equal to the integral of the square root of (U) because (x^2 + x) is (U), times (DU), which is much easier to evaluate. If you are still confused, you might recognize it if I rewrite this as (u^{\frac{1}{2}}) because now we could just use the reverse power rule to evaluate this.

Then, we would have to undo the substitution. Once we figure out what this antiderivative is, we would then reverse substitute the (X) expression back in for the (U).

More Articles

View All
15 Most Expensive Mistakes You Can Make in Life
Not all mistakes are created equal, and you’ve got a couple ahead of you that could make or break your future. By the end of this video, you’ll have a clear understanding of what you should pay attention to. Here are 15 expensive mistakes that you can mak…
The Rise of the Cali Drug Cartel | Narco Wars
[music playing] JIM SHEDD: Gilberto Rogriuez Orejuela and Miguel Rodriguez Orejuela were the heads of a cartel that was totally different than the other cartels. They looked at it more as a business to expand, and they were involved in the cost versus pr…
Natascha McElhone: Playing Elizabeth Hopkins | Saints & Strangers
Elizabeth is a stranger. She’s not a program. She should even come for religious reasons, and this is indicative of the age and the era, 1620s. Uh, Elizabeth is introduced and is in the story largely because of her husband, Steven Hopkins. She comes with…
Exchange rate primer | AP Macroeconomics | Khan Academy
You’re already likely familiar with the notion that a dollar in the US, a US dollar, is not necessarily equivalent to one currency unit in another country, say one euro. So, if you were traveling to that country and you are holding dollars, and you need t…
AI and bad math
What we’re going to see in this video is that the current versions of artificial intelligence are not always perfect at math, and we’re going to test this out. I created a simple math tutor on Chat GPT here, and what we’re going to do is see if it can hel…
Charlie Munger: The 5 Investing Tricks That Made Him a Billionaire
But what caused the financial success was not extreme ability. You know, I have a good mind, but I’m way short of prodigy. And I’ve had results in life that are prodigious, and that came from tricks I just learned a few basic tricks from people like my gr…