yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Making SOLID Nitrogen!


2m read
·Nov 10, 2024

Boiling point is something that we normally think of as a stable property of a substance. But it really depends on what the pressure is around the substance. So, for example, water only boils at 100 degrees Celsius if the pressure is 1 atmosphere.

So if you reduce the pressure, then those water molecules that are going quite quickly can easily escape from the water if there's no pressure pushing down on them. So you can get water to boil at room temperature. This is really boiling water. The funny thing about boiling water at room temperature is that it actually decreases the temperature of the water.

That's because all the fastest water molecules escape, leaving only the slow ones behind. We are refrigerating the water. Refrigerating the water by boiling it. Yes, yes (Laughing) That is a cool concept.

I know everyone's a big fan of liquid nitrogen, but I've never seen solid nitrogen. So we used the same trick, pumping out the very fastest nitrogen molecules. And eventually, that decreased the temperature enough that the nitrogen actually froze. (Laughing)

I'm putting a thermocouple in there so we can measure the temperature of our liquid nitrogen. And it reads... Okay, so the temperature of our liquid nitrogen is about minus 196 Celsius. Which is exactly what it should be.

And now we're going to evacuate the chamber. We're gonna suck the air out of there. You can see that the nitrogen is boiling. The temperature's dropping, minus 199, minus 200... We're coming up on the triple point of nitrogen.

I don't know. We're forming solid nitrogen. The ice is actually getting sucked up by the reduced pressure up here, and there is a higher pressure underneath the ice because the vacuum pump hasn't had a chance to work there. I've never seen solid nitrogen before.

After creating the solid nitrogen, we poured it onto a water bath. And we got the whole surface so cold that carbon dioxide actually condensed out of the atmosphere, and we formed solid carbon dioxide, dry ice, on the surface of the water. We have a solid piece of CO2.

More Articles

View All
The Challenges a Repeat Founder Faces - Tikhon Bernstam
Hey guys, today we have Tea Con Burn, a multi-time YC founder. So could you just start by explaining how you first found YC? Yeah, I actually found YC because I was on Reddit. I was in graduate school, which meant I had a lot of free time. And so I was, …
Continuity at a point | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is come up with a more rigorous definition for continuity and the general idea of continuity. We’ve got an intuitive idea of the past; that a function is continuous at a point is if you can draw the graph of that funct…
Underwater Snow Mobile | The Boonies
Any luck over there? Nope, no snowmobile yet. Maybe a rock and a log, 18 miles from the mainland, far outside the grid. Dan Burton is attempting to salvage a sunken snowmobile from the bottom of Lake Michigan. “I’m sure it’s here! I don’t see anybody bea…
Newton's third law conceptual worked example
Block A with mass m sits on top of block B with mass 2m in an elevator. The elevator is moving downward and slowing down. All right, when we have this diagram over here, it’s moving downward and slowing down, so that means it’s accelerating upwards. The m…
The Technical Advisor for Silicon Valley on HBO: Ed McManus
Okay, so today we have Ed McManis. He was a technical adviser for Silicon Valley, uh, on HBO season 3. Um, so Ed, what’s your background? Okay, so, uh, I was a technical co-founder of a Y Combinator startup called Yard Sale. Um, and, uh, we launched two …
Rare Dumbo Octopus Shows Off for Deep-sea Submersible | National Geographic
Oh oh oh oh! Look, we got a little octopus up in the comments. You get rewarded after all those sea pigs. All right, valet crew, here we go! All right, I’m gonna paint it with the lasers, and I’m gonna turn them off for some really good imaging. Yeah, ye…