yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Making SOLID Nitrogen!


2m read
·Nov 10, 2024

Boiling point is something that we normally think of as a stable property of a substance. But it really depends on what the pressure is around the substance. So, for example, water only boils at 100 degrees Celsius if the pressure is 1 atmosphere.

So if you reduce the pressure, then those water molecules that are going quite quickly can easily escape from the water if there's no pressure pushing down on them. So you can get water to boil at room temperature. This is really boiling water. The funny thing about boiling water at room temperature is that it actually decreases the temperature of the water.

That's because all the fastest water molecules escape, leaving only the slow ones behind. We are refrigerating the water. Refrigerating the water by boiling it. Yes, yes (Laughing) That is a cool concept.

I know everyone's a big fan of liquid nitrogen, but I've never seen solid nitrogen. So we used the same trick, pumping out the very fastest nitrogen molecules. And eventually, that decreased the temperature enough that the nitrogen actually froze. (Laughing)

I'm putting a thermocouple in there so we can measure the temperature of our liquid nitrogen. And it reads... Okay, so the temperature of our liquid nitrogen is about minus 196 Celsius. Which is exactly what it should be.

And now we're going to evacuate the chamber. We're gonna suck the air out of there. You can see that the nitrogen is boiling. The temperature's dropping, minus 199, minus 200... We're coming up on the triple point of nitrogen.

I don't know. We're forming solid nitrogen. The ice is actually getting sucked up by the reduced pressure up here, and there is a higher pressure underneath the ice because the vacuum pump hasn't had a chance to work there. I've never seen solid nitrogen before.

After creating the solid nitrogen, we poured it onto a water bath. And we got the whole surface so cold that carbon dioxide actually condensed out of the atmosphere, and we formed solid carbon dioxide, dry ice, on the surface of the water. We have a solid piece of CO2.

More Articles

View All
A Little Sea Sick | Wicked Tuna
Like liver, like failing. Your liver failing. Did you puke? No, it’s not my stomach. We’ve been fishing hard for almost five straight weeks now, and I woke up this morning with an excruciating pain in my side. Um, it feels like when my appendix burst. I c…
Bringing Power to Villages | Years of Living Dangerously
[Music] I want this. Who drove in? In this, find out what it’ll take for let’s just see if we can’t close this deal. [Music] Now, David Letterman is visiting a village that has no power. The number that we hear about Indians living off the grid is usually…
Worked example: Calculating E° using standard reduction potentials | AP Chemistry | Khan Academy
Let’s do a worked example where we calculate the standard potential at 25 degrees celsius for this reaction. In this redox reaction, silver cations are reduced to form solid silver, and solid chromium is oxidized to form the Cr3 plus ion. The first step …
The True Cost of the Royal Family Explained
Look at that! What a waste! That Queen living it off the government in her castles with her corgis and gin. Just how much does this cost to maintain? £40 million. That’s about 65p per person per year of tax money going to the royal family. Sure, it’s stil…
Watch Thousands of Dogs Run Free in This Magical Sanctuary | Short Film Showcase
It was also he was the first dog who got me thinking. So what if I didn’t want to keep? Also, he wasn’t gonna find a woman, anybody else, and he’d be put down. So a hundred dogs became 200 dogs, and then 300 dogs. And then all of a sudden we thought, “Oka…
Analyzing mistakes when finding extrema (example 1) | AP Calculus AB | Khan Academy
Pamela was asked to find where ( h(x) = x^3 - 6x^2 + 12x ) has a relative extremum. This is her solution. So, step one, it looks like she tried to take the derivative. Step two, she tries to find the solution to find where the derivative is equal to zero…