yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Most Beautiful Equation: How Wilczek Got His Nobel | Frank Wilczek | Big Think


4m read
·Nov 4, 2024

There are four fundamental forces of nature as we now understand it. There’s gravity and electromagnetism, which are the classic forces known already in prehistory and known in some form to the ancient Greeks, but which had mature theories in the case of gravity already in the seventeenth century with Newton and in the nineteenth century with Maxwell, and very beautiful descriptions; in the case of gravity, made even more beautiful with Einstein’s general theory of relativity in the early twentieth century.

But in the course of studying subatomic physics and what goes on at very, very short distances, people found they needed two additional forces – gravity and electromagnetism aren’t enough. The two additional forces are called the strong and weak forces. What I got the Nobel Prize for was figuring out the equations of the strong force. And equally important, not just guessing the equations, but showing how you can test them and see that they were right.

This was something I did as a graduate student. I was, of course, working very closely with my thesis advisor, a very, very gifted and powerful physicist named David Gross. What – so how did we go about doing it? Well, there were some – the experimental situation regarding the strong interaction was very confused, desperately confused. There was no theory even remotely worthy of standing beside Newton’s theory of gravity or Einstein’s or Maxwell’s theory of electromagnetism.

There were just a lot of rules of thumb and a lot of confusing data. What we did was focus on one particular phenomenon and try to understand just that, putting off all other aspects of this confusing situation. The phenomena we tried to understand seemed so paradoxical, so crazy that we thought if we could understand that, we could understand anything basically. And also because it seemed so profound and fundamental.

Actually, David thought that we could prove that it couldn’t – that you couldn’t understand it within the standard framework of quantum mechanics and relativity. And that will be a very important result too because we tell physicists they had to go back to the drawing board. This aspect that we were trying to explain was the fact that quarks, which were somewhat speculative but a pretty clear indication of reality at that time – when they get close together, they hardly interact at all.

Or when they’re moving at very high velocity relative to their high energy, again they don’t interact very much at all. But if you try to pull them apart a significant distance, which means in this case ten to the minus 13 centimeters or more, or if they’re moving slowly, then they have very, very powerful forces. In fact, you can’t extract single quarks from matter. They always exist bound to one another inside protons and neutrons.

So we needed a force which gets weaker at short distances and grows as the distance grows. That’s a very paradoxical and difficult thing to imagine and make consistent with the other laws of physics that we know. Now, there were powerful mathematical techniques for investigating that kind of question that had been developed for other purposes called renormalization group. So we were able to bring those techniques to bear and address this question.

And they were very difficult calculations. It wasn’t entirely clear that they were consistent, that you could actually do this kind of calculation in the kind of theory that was most beautiful, that we wanted to investigate. But we insisted on hoping that the most beautiful equations would be the right equations. And we found out that a very, very special class of theoretical constructions with tremendous amounts of symmetry could give you this behavior.

So that was – I compare that to Archimedes saying that if you give me a lever and a place to stand, I can lift the world. Based on that kind of leverage given by the sort of basic principles and faith in symmetry and beauty, plus this one fact about the forces getting weaker, we were led to quite a unique proposal for what the equations of the strong interaction should be.

And we could develop some consequences of those equations and then propose to experimenters that they go out and check whether these consequences are correct. Now it took several years afterwards before it became clear that those consequences we predicted were correct, but they are. And in subsequent years, it’s become more and more clear the theory has been used for a wide variety of applications now with great success.

The kind of thing that in the early days was called testing quantum chromodynamics or testing asymptotic freedom is now called calculating backgrounds. So it’s gone from being a glamorous exploration of new worlds to kind of taking care of the garbage. So I think you could look for more interesting things. But, well, although it sounds in a way it’s kind of a step down, if I look at it in the big picture, it’s glorious that you have a theory that was originally very speculative and just something that existed in our minds.

And it’s gone now to being an absolutely accepted and basic part of our understanding of nature, and a very beautiful one.

More Articles

View All
EPIC NOSE PICKING and why Football RULES -- IMG! #20
Master Chief loves football, and the most confused face ever. It’s a special football episode of IMG North American football. It gives you everything a guy could want: kicks to the face, kicks to the nuts, and heads up your butt. You get to pick; you can …
Warren Buffett's 5 Rules for Money
So if you clicked on this video, it’s fair to say that you want to learn how to build wealth and not be broke. Thankfully for us, billionaire investor Warren Buffett has provided us with five key principles that will help you start building wealth and avo…
Around the World on Sun Power | Origins: The Journey of Humankind
Where you are going is just as important as how you plan to get there. As we look forward to new frontiers here on Earth and beyond, places where resources may be scarce or non-existent, we need to look for new ways to carry ourselves beyond the horizon; …
Standard normal table for proportion below | AP Statistics | Khan Academy
A set of middle school students’ heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Darnell is a middle school student with a height of 161.405, so it would have a shape that looks something like that. That’s my hand…
Your Subconscious Mind is Ridiculously Powerful
Paulo, one of the main hosts of the World Cup, was anything but festive. Entire parts of the city remained shut, as cars were stuck on stretches of tarmac as far as the eye could see. The effects soon extended well beyond the city, as the entire country o…
Trade and tariffs | APⓇ Microeconomics | Khan Academy
In this video, we’re going to think about how trade affects the total economic surplus in a market, and we’re also going to think about tariffs, which are a per-unit charge that a government will often put on some type of good that is being imported. Usua…