yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Most Beautiful Equation: How Wilczek Got His Nobel | Frank Wilczek | Big Think


4m read
·Nov 4, 2024

There are four fundamental forces of nature as we now understand it. There’s gravity and electromagnetism, which are the classic forces known already in prehistory and known in some form to the ancient Greeks, but which had mature theories in the case of gravity already in the seventeenth century with Newton and in the nineteenth century with Maxwell, and very beautiful descriptions; in the case of gravity, made even more beautiful with Einstein’s general theory of relativity in the early twentieth century.

But in the course of studying subatomic physics and what goes on at very, very short distances, people found they needed two additional forces – gravity and electromagnetism aren’t enough. The two additional forces are called the strong and weak forces. What I got the Nobel Prize for was figuring out the equations of the strong force. And equally important, not just guessing the equations, but showing how you can test them and see that they were right.

This was something I did as a graduate student. I was, of course, working very closely with my thesis advisor, a very, very gifted and powerful physicist named David Gross. What – so how did we go about doing it? Well, there were some – the experimental situation regarding the strong interaction was very confused, desperately confused. There was no theory even remotely worthy of standing beside Newton’s theory of gravity or Einstein’s or Maxwell’s theory of electromagnetism.

There were just a lot of rules of thumb and a lot of confusing data. What we did was focus on one particular phenomenon and try to understand just that, putting off all other aspects of this confusing situation. The phenomena we tried to understand seemed so paradoxical, so crazy that we thought if we could understand that, we could understand anything basically. And also because it seemed so profound and fundamental.

Actually, David thought that we could prove that it couldn’t – that you couldn’t understand it within the standard framework of quantum mechanics and relativity. And that will be a very important result too because we tell physicists they had to go back to the drawing board. This aspect that we were trying to explain was the fact that quarks, which were somewhat speculative but a pretty clear indication of reality at that time – when they get close together, they hardly interact at all.

Or when they’re moving at very high velocity relative to their high energy, again they don’t interact very much at all. But if you try to pull them apart a significant distance, which means in this case ten to the minus 13 centimeters or more, or if they’re moving slowly, then they have very, very powerful forces. In fact, you can’t extract single quarks from matter. They always exist bound to one another inside protons and neutrons.

So we needed a force which gets weaker at short distances and grows as the distance grows. That’s a very paradoxical and difficult thing to imagine and make consistent with the other laws of physics that we know. Now, there were powerful mathematical techniques for investigating that kind of question that had been developed for other purposes called renormalization group. So we were able to bring those techniques to bear and address this question.

And they were very difficult calculations. It wasn’t entirely clear that they were consistent, that you could actually do this kind of calculation in the kind of theory that was most beautiful, that we wanted to investigate. But we insisted on hoping that the most beautiful equations would be the right equations. And we found out that a very, very special class of theoretical constructions with tremendous amounts of symmetry could give you this behavior.

So that was – I compare that to Archimedes saying that if you give me a lever and a place to stand, I can lift the world. Based on that kind of leverage given by the sort of basic principles and faith in symmetry and beauty, plus this one fact about the forces getting weaker, we were led to quite a unique proposal for what the equations of the strong interaction should be.

And we could develop some consequences of those equations and then propose to experimenters that they go out and check whether these consequences are correct. Now it took several years afterwards before it became clear that those consequences we predicted were correct, but they are. And in subsequent years, it’s become more and more clear the theory has been used for a wide variety of applications now with great success.

The kind of thing that in the early days was called testing quantum chromodynamics or testing asymptotic freedom is now called calculating backgrounds. So it’s gone from being a glamorous exploration of new worlds to kind of taking care of the garbage. So I think you could look for more interesting things. But, well, although it sounds in a way it’s kind of a step down, if I look at it in the big picture, it’s glorious that you have a theory that was originally very speculative and just something that existed in our minds.

And it’s gone now to being an absolutely accepted and basic part of our understanding of nature, and a very beautiful one.

More Articles

View All
Ionic solids | Intermolecular forces and properties | AP Chemistry | Khan Academy
Let’s talk a little bit about ionic solids, which you can imagine are solids formed by ions. So let’s think a little bit about these ions. For example, we could look at group one elements here, especially things like lithium, sodium, or potassium. In many…
Ray Dalio: STOP Trying to Time the Market
Wouldn’t it be great if we as investors could know right when the stock market was about to fall so we could get out and not lose money? And then jump right back in at the bottom of the market? Based on some of the videos on YouTube and articles written o…
Cell parts and their functions | Cells and organisms | Middle school biology | Khan Academy
So let’s imagine this scenario. It’s cold outside, and we want to make a nice hot bowl of chicken noodle soup. Well, we’d probably need to get the ingredients first. We need some chicken bones to give the broth that distinct chicken flavor, some noodles t…
Blacksmith for Barter | Live Free or Die
Gonna be a hot one today in the mountains of Colorado. Primitive blacksmith Derik fires up his forge to nearly 2500 degrees, the ideal temperature to mold iron. Today I’m gonna continue working on my camp set, try to finish that out—four more pieces beca…
Filming Africa’s Top Predators : Beyond ‘Savage Kingdom’ (Part 2) | Nat Geo Live
(Pulsing music) - Since 2012, we have been based in Savute. I just want to walk you through the reason why we ended up there and how that kind of led into the making of Savage Kingdom. Botswana is a landlocked country right in the heart of Southern Africa…
Math Magic
Hey, Vauce. Michael here. If you rearrange the letters in “William Shakespeare,” you can spell “here was I like a Psalm.” In the King James Bible, in Psalm 46, the 46th word is “shake,” and the 46th word from the bottom is “spear.” William Shake spear wa…