yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying the constant of proportionality from equation | 7th grade | Khan Academy


3m read
·Nov 11, 2024

When you hear "constant of proportionality," it can seem a little bit intimidating at first. It seems very technical, but as we'll see, it's a fairly intuitive concept, and we'll do several examples. Hopefully, you'll get a lot more comfortable with it.

So let's say we're trying to make some type of baked goods. Maybe it's some type of muffin, and we know that depending on how many muffins we're trying to make, for a given number of eggs, we always want twice as many cups of milk. So we could say cups of milk equals two times the number of eggs.

So what do you think the constant of proportionality is here, sometimes known as the proportionality constant? Well, yes, it is going to be two. This is a proportional relationship between the cups of milk and the number of eggs. The cups of milk are always going to be two times the number of eggs. Give me the number of eggs, I'm going to multiply it by the constant of proportionality to get the cups of milk.

We can see how this is a proportional relationship a little bit clearer if we set up a table. So if we say "number of eggs," and if we say "cups of milk," and make a table here, well, if you have one egg, how many cups of milk are you gonna have? Well, this right over here would be one times two, well, you're gonna have two cups of milk.

If you had three eggs, well, you're just gonna multiply that by two to get your cups of milk, so you're gonna have six cups of milk. If you had one million eggs, so we have a very big party here; maybe we're some type of industrial muffin producer. Well, how many cups of milk? Well, you put a million in right over here, multiply it by two, you get your cups of milk. You're going to need two million cups of milk, and you can see that this is a proportional relationship.

To go from the number of eggs to cups of milk, we indeed multiplied by two every time; that came straight from this equation. You can also see, look, whenever you multiply your number of eggs by a certain amount, you're multiplying your cups of milk by the same amount. If I multiply my eggs by a million, I'm multiplying my cups of milk by a million, so this is clearly a proportional relationship.

Let's get a little bit more practice identifying the constant of proportionality. So let's say I'll make it a little bit more abstract. Let's say I have some variable "a," and it is equal to five times some variable "b." What is the constant of proportionality here? Pause this video and see if you can figure it out. Yes, it is five.

Give me a "b," I'm going to multiply it by five, and I can figure out what "a" needs to be. Let's do another example. If I said that "y" is equal to pi times "x," what is the constant of proportionality here? Well, you give me an "x," I'm going to multiply it times a number. The number here is pi to give you "y," so our constant of proportionality here is pi.

Let's do one more. If I were to say that "y" is equal to one-half times "x," what is the constant of proportionality? Pause this video, think about it. Well, once again, this is just going to be the number that we're multiplying by "x" to figure out "y," so it is going to be one-half.

In general, you might sometimes see it written like this: "y" is equal to "k" times "x," where "k" would be some constant. That would be our constant of proportionality. You see the one-half is equal to "k" here; pi is equal to "k" right over there. So hopefully, that helps.

More Articles

View All
Warren Buffett: How Most People Should Invest
[Music] So Warren Buffett, we know he is the world’s best investor, and he has built his fortune by analyzing individual businesses and buying them at discounted prices. His strategy can essentially be summarized by just waiting and waiting and waiting un…
What Happens If We Throw an Elephant From a Skyscraper? Life & Size 1
Let’s start this video by throwing a mouse, a dog, and an elephant from a skyscraper onto something soft. Let’s say, a stack of mattresses. The mouse lands and is stunned for a moment before it shakes itself off and walks away pretty annoyed, because that…
The Most Powerful Mindset for Success
There is a psychological trait that all successful people appear to have in common. It’s been cosigned by Bill Gates and NASA uses it as a criteria for selecting potential Systems Engineers. This concept is called the growth mindset, a term originally coi…
Hanging out with a monitor lizard | Primal Survivor: Extreme African Safari
There’s a monitor lizard right there, right on that termite mound, just basking in the sun. They can either play dead or they can run like grease lightning. Let me see if I can get a better look at it. I can see that this monitor could use a little hel…
GOING SUPERSONIC with U.S. Air Force Thunderbirds! Pulling 7 G's in an F-16 -Smarter Every Day 235
Destin: Hey, it’s me, Destin. Welcome back to Smarter Every Day. Today, we’re going to hang out with the Thunderbirds of the US Air Force. We’re going to see if we can break the sound barrier. The temptation, when you’re making a video about yourself flyi…
Vector word problem: resultant force | Vectors | Precalculus | Khan Academy
We’re told that a metal ball lies on a flat horizontal surface. It is attracted by two magnets placed around it. We’re told that the first magnet’s force on the ball is five newtons. We’re then told the second magnet’s force on the ball is three newtons i…