yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying the constant of proportionality from equation | 7th grade | Khan Academy


3m read
·Nov 11, 2024

When you hear "constant of proportionality," it can seem a little bit intimidating at first. It seems very technical, but as we'll see, it's a fairly intuitive concept, and we'll do several examples. Hopefully, you'll get a lot more comfortable with it.

So let's say we're trying to make some type of baked goods. Maybe it's some type of muffin, and we know that depending on how many muffins we're trying to make, for a given number of eggs, we always want twice as many cups of milk. So we could say cups of milk equals two times the number of eggs.

So what do you think the constant of proportionality is here, sometimes known as the proportionality constant? Well, yes, it is going to be two. This is a proportional relationship between the cups of milk and the number of eggs. The cups of milk are always going to be two times the number of eggs. Give me the number of eggs, I'm going to multiply it by the constant of proportionality to get the cups of milk.

We can see how this is a proportional relationship a little bit clearer if we set up a table. So if we say "number of eggs," and if we say "cups of milk," and make a table here, well, if you have one egg, how many cups of milk are you gonna have? Well, this right over here would be one times two, well, you're gonna have two cups of milk.

If you had three eggs, well, you're just gonna multiply that by two to get your cups of milk, so you're gonna have six cups of milk. If you had one million eggs, so we have a very big party here; maybe we're some type of industrial muffin producer. Well, how many cups of milk? Well, you put a million in right over here, multiply it by two, you get your cups of milk. You're going to need two million cups of milk, and you can see that this is a proportional relationship.

To go from the number of eggs to cups of milk, we indeed multiplied by two every time; that came straight from this equation. You can also see, look, whenever you multiply your number of eggs by a certain amount, you're multiplying your cups of milk by the same amount. If I multiply my eggs by a million, I'm multiplying my cups of milk by a million, so this is clearly a proportional relationship.

Let's get a little bit more practice identifying the constant of proportionality. So let's say I'll make it a little bit more abstract. Let's say I have some variable "a," and it is equal to five times some variable "b." What is the constant of proportionality here? Pause this video and see if you can figure it out. Yes, it is five.

Give me a "b," I'm going to multiply it by five, and I can figure out what "a" needs to be. Let's do another example. If I said that "y" is equal to pi times "x," what is the constant of proportionality here? Well, you give me an "x," I'm going to multiply it times a number. The number here is pi to give you "y," so our constant of proportionality here is pi.

Let's do one more. If I were to say that "y" is equal to one-half times "x," what is the constant of proportionality? Pause this video, think about it. Well, once again, this is just going to be the number that we're multiplying by "x" to figure out "y," so it is going to be one-half.

In general, you might sometimes see it written like this: "y" is equal to "k" times "x," where "k" would be some constant. That would be our constant of proportionality. You see the one-half is equal to "k" here; pi is equal to "k" right over there. So hopefully, that helps.

More Articles

View All
Turbulent Flow is MORE Awesome Than Laminar Flow
A portion of this video was sponsored by Cottonelle. This is like a scientist trap. It certainly is; case in point, that is Space Station commander Chris Hadfield. What this isn’t is turbulent. Nope, this is largely laminar flow. “Did somebody say peculia…
Charlie Munger: The Real Estate Crash of a GENERATION
Billionaire investor Charlie Munger just issued a dire warning about what’s ahead for the U.S. real estate market, and unlike most people who issue these types of predictions, Munger actually knows a thing or two about the topic. Before he rose to fame as…
Kevin O'Leary Investment RuckPack featured on Bloomberg TV
There tell people first of all about Ruckpack. What is this? This company and product? Ruckpack is a peak performance nutrition shot, pure and simple. It’s good ingredients; it’s the things you need that your body needs to stay on top, to stay in peak per…
YC SUS: Kat Mañalac and Eric Migicovsky discuss Week 2 SUS Lectures
Good morning everyone, and good evening. It could be anywhere actually. I’d like to start somewhere. My name is Eric, and I’m the facilitator, of course, facilitator here at Startup School. It’s a pleasure to be joined by Kat. “Hi everyone, I’m Kat, a pa…
Mapping shapes
We’re told that triangles. Let’s see, we have triangle PQR and triangle ABC are congruent. The side length of each square on the grid is one unit, so each of these is one unit. Which of the following sequences of transformations maps triangle PQR onto tri…
Calculating weights on Mars with if-elif-else | Intro to CS - Python | Khan Academy
Let’s design a program with chain conditionals. We want to build a program that calculates an object’s weight on different planets. We have the formula for this already: weight equals mass times gravity. So, if we know an object’s weight on Earth, we can…