yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying the constant of proportionality from equation | 7th grade | Khan Academy


3m read
·Nov 11, 2024

When you hear "constant of proportionality," it can seem a little bit intimidating at first. It seems very technical, but as we'll see, it's a fairly intuitive concept, and we'll do several examples. Hopefully, you'll get a lot more comfortable with it.

So let's say we're trying to make some type of baked goods. Maybe it's some type of muffin, and we know that depending on how many muffins we're trying to make, for a given number of eggs, we always want twice as many cups of milk. So we could say cups of milk equals two times the number of eggs.

So what do you think the constant of proportionality is here, sometimes known as the proportionality constant? Well, yes, it is going to be two. This is a proportional relationship between the cups of milk and the number of eggs. The cups of milk are always going to be two times the number of eggs. Give me the number of eggs, I'm going to multiply it by the constant of proportionality to get the cups of milk.

We can see how this is a proportional relationship a little bit clearer if we set up a table. So if we say "number of eggs," and if we say "cups of milk," and make a table here, well, if you have one egg, how many cups of milk are you gonna have? Well, this right over here would be one times two, well, you're gonna have two cups of milk.

If you had three eggs, well, you're just gonna multiply that by two to get your cups of milk, so you're gonna have six cups of milk. If you had one million eggs, so we have a very big party here; maybe we're some type of industrial muffin producer. Well, how many cups of milk? Well, you put a million in right over here, multiply it by two, you get your cups of milk. You're going to need two million cups of milk, and you can see that this is a proportional relationship.

To go from the number of eggs to cups of milk, we indeed multiplied by two every time; that came straight from this equation. You can also see, look, whenever you multiply your number of eggs by a certain amount, you're multiplying your cups of milk by the same amount. If I multiply my eggs by a million, I'm multiplying my cups of milk by a million, so this is clearly a proportional relationship.

Let's get a little bit more practice identifying the constant of proportionality. So let's say I'll make it a little bit more abstract. Let's say I have some variable "a," and it is equal to five times some variable "b." What is the constant of proportionality here? Pause this video and see if you can figure it out. Yes, it is five.

Give me a "b," I'm going to multiply it by five, and I can figure out what "a" needs to be. Let's do another example. If I said that "y" is equal to pi times "x," what is the constant of proportionality here? Well, you give me an "x," I'm going to multiply it times a number. The number here is pi to give you "y," so our constant of proportionality here is pi.

Let's do one more. If I were to say that "y" is equal to one-half times "x," what is the constant of proportionality? Pause this video, think about it. Well, once again, this is just going to be the number that we're multiplying by "x" to figure out "y," so it is going to be one-half.

In general, you might sometimes see it written like this: "y" is equal to "k" times "x," where "k" would be some constant. That would be our constant of proportionality. You see the one-half is equal to "k" here; pi is equal to "k" right over there. So hopefully, that helps.

More Articles

View All
Eric Migicovsky at Startup School SV 2014
Hi guys, um, it’s an honor to be here. I really appreciate you guys taking time out of your day to come listen to me. Um, I know that many of you may have heard about us when we launched on Kickstarter about two years ago. Um, I’m here to tell you a littl…
🇬🇧🔥 Brexit, Briefly: REVISITED! 🔥🇪🇺
Hey, what’s going on with Brexit? Well, there sure has been a lot of political squabbling here at ground level. Let’s float away from all that for a look at the big picture. Up here it’s easier to see the one-two-three of the impossible Trinity. But firs…
10 Things I Wish I Knew Before I Started Stock Market Investing (How to Invest in 2023)
So I’ve seen these videos pop up with video games, right? “10 Things I Wish I Knew Before Playing Starfield” or “World of Warcraft” or whatever, and it sparked a bit of an idea. Now that I’ve been investing in the stock market for, you know, a little whil…
When disaster strikes: Explorer Albert Lin nearly gets crushed by falling boulder
Oh my God. [bleep] [bleep] Are you alright there? Are you okay? Please, can you bring me that first aid kit immediately. [bleep] That was terrifying. [bleep] Hell, that was [bleep] terrifying. Pardon my French. Holy [bleep]. [bleep] That was- That was a h…
Strike First, Strike Hard, No Mercy | The Philosophy of Cobra Kai
It’s not just to reignite his old passion for karate and to avenge his old nemesis, Daniel LaRusso. One of the reasons why Johnny Lawrence re-opens his old dojo, Cobra Kai, is that he believes that by doing so, he can give today’s youth exactly what they …
Scientific Notation - Explained!
In science, we often have to deal with some very large numbers. For example, the mass of the sun. That is the mass of the sun. Two followed by thirty zeros in units of kilograms. That is two thousand billion billion billion kilograms. There has got to be …