yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6b | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Find the coordinates of all points on the curve at which the line tangent to the curve at that point is vertical.

So, we want to figure out the points on that curve where the tangent line is vertical. Let's just remind ourselves what the slope of a tangent line is, or what it isn't. I guess this may be a better way to think about it.

If you have a horizontal line, so let me draw a horizontal line, if you have a horizontal line like that, well then your slope is zero. You could say your rate of change of y with respect to x is equal to zero.

But what about a vertical line? If you have a vertical line like that, what is your rate of change of y with respect to x? Well, some people might say it's infinity, or you could say it's undefined. It's undefined in some way because at some point, or one way to think about it, you're going to try to divide by zero because you have a huge change in y over no change in x.

Another way to think about it that's a little bit more in line with that is you could say that your change in x with respect to change in y—notice I took the reciprocal—so now we're talking about our change in the derivative of x with respect to y is equal to zero. Because your y can change, but as your y changes, your x does not change.

So, can we use this little insight here on vertical lines to think about the coordinates of all points on the curve at which the line tangent to the curve at that point is vertical? Well, before they told us, they gave us the curve of the equation and they also told us what dy/dx is. Let me just rewrite them again just so we have them there.

So we know that y to the third minus x y is equal to two. This is the equation of our curve. And we know that dy/dx is equal to y over 3y squared minus x.

One thing that we could do is, well, let's just figure out what the derivative of x with respect to y is and set that to be equal to zero. So this is the derivative of y with respect to x. If we take the reciprocal of that, the derivative of x with respect to y—just the reciprocal of this—is going to be 3y squared minus x over y.

If we want this to be equal to zero, like we said right over here, well then that's only going to happen if the numerator is equal to zero. So we can say, okay, at what xy pair does this numerator equal to zero? 3y squared minus x is equal to zero. You can add x to both sides and you get 3y squared is equal to x.

Another way you could have thought about it is: What x and y values does the derivative of y with respect to x become undefined? Well, that's going to become undefined if the denominator here is zero. But when you're dealing with things like undefined, it gets a little bit more hand-wave.

Yeah, I like to just think of this as the rate at which x is changing with respect to y is zero. And so that got us to the same conclusion.

Well, for that to be true, x has to be equal to 3y squared. Of course, the xy pair has to also satisfy the equation for the curve. So why don't we use both of these constraints and then we can solve for x and y?

The easiest thing I can think of doing is let's substitute x with 3y squared because they are the same—that's the second constraint. So if we take our original equation of the curve, we get y to the third minus instead of writing x, I could write 3y squared.

3y squared times y is equal to two. And so we get y to the third minus three y to the third is equal to two. This is negative two y to the third is equal to two. We can divide both sides by negative two and we get y to the third is equal to negative one, or y is equal to negative one.

Negative one to the third power is negative one. Now, if y is negative one, what is x? Well, x is going to be equal to 3 times negative one squared. So negative one squared is just one, so x is going to be equal to three.

So the point on that curve at which the tangent line is vertical is going to be the point three comma negative one, and we are all done.

More Articles

View All
Pope Francis: The Story Behind National Geographic's Cover Photo | Nat Geo Live
[Music] Dave: What was tougher, covering the pope for six months or slogging through a Honduran jungle looking for a lost city? Oh well, it was definitely much harder to access the Vatican than the jungle. For me, when you work around the pope, you have…
BEHIND THE SCENES Of Shark Tank During COVID | Kevin O'Leary
I’m um in Las Vegas somewhere in quarantine getting ready to shoot Shark Tank, in the bubble, as they say. [Music] So anyways, I’m um in Las Vegas somewhere in quarantine somewhere and, uh, getting ready to shoot Shark Tank real soon in the bubble, as the…
Emergence – How Stupid Things Become Smart Together
An ant is pretty stupid. It doesn’t have much of a brain, no will, no plan, and yet, many ants together are smart. An ant colony can construct complex structures. Some colonies keep farms of fungi; others take care of cattle. They can wage war or defend t…
Free energy and equilibrium | Applications of thermodynamics | AP Chemistry | Khan Academy
Let’s say we have a generic reaction where reactants turn into products, and our goal is to think about the relationship between free energy and this reaction when it comes to equilibrium. First, we need to consider the equation that allows us to calculat…
Worked free response question on unemployment | APⓇ Macroeconomics | Khan Academy
We are told the following table shows labor market data for country X, and they tell us how many are employed, frictionally unemployed, structurally unemployed, cyclically unemployed, and also not in the labor force. So this first question here, and actu…
Recognition | Vocabulary | Khan Academy
I see you, word Smiths, which is good because the word I’m talking about in this video is recognition. Recog, it’s a noun; it means the act of acknowledging, being aware of, or noticing something. Follow me over to the atmology Zone trademark where I’m g…