yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Can you solve the fortress riddle? - Henri Picciotto


3m read
·Nov 8, 2024

Bad news: your worst enemies are at the gate. For your fledgling kingdom guards the world’s only herd of tiny dino creatures. To you, they’re sacred. To everyone else, they’re food. The three closest nation-states have all teamed up in what they call an alliance of the hungry to smash open your walls and devour the herd.

Your fortifications will hold off their armies for now. But when their siege weapons arrive tomorrow, you won’t stand a chance. Luckily, you have a wall fabricator: if you run it all night, you may be able to reinforce your border before the weapons arrive. However, it can only create wall segments of a specific, whole number size that you must determine ahead of time.

Your engineers have been in close consultation with your spymaster. Each rival kingdom has wall-busters that come in one specific size. The clowns’ are all 6 meters, the royals’ are 9, and the redheads’ are 20. Each wall-buster can level a wall segment of the matching size. And they can be combined as well; two 6’s can take out a 12 meter wall and a 6 and a 9 could break one that’s 15 meters. But a 7 meter wall would hold fast against any of them.

Meanwhile, large walls aren't necessarily protected. Here’s how they could take down 70, 71, and 72 meters. Your fabricator takes the same amount of time to produce a wall segment no matter its length, and it’s not particularly fast. So to finish the wall in time, you need the longest segment that can’t be destroyed by any combination of the siege weapons, which your enemies have hundreds of.

What wall length will save your kingdom? Pause here to figure it out yourself.

Answer in 3. Answer in 2. Answer in 1.

It's possible to solve this problem by trial and error. But there’s also a remarkably quick and elegant solution inspired by an idea that’s thousands of years old: the sieve of Eratosthenes. Eratosthenes of Cyrene was a 3rd century BCE mathematician from ancient Greece interested in prime numbers, that is numbers only divisible by 1 and themselves.

Presumably he grew bored of manually checking whether a given number was prime, so he came up with the following technique. Make a giant list of numbers. X out all of the multiples of 2, except 2 itself. Now do the same with multiples of 3. The even multiples have already been eliminated, and the odd multiples can all be found in this column.

4 was already accounted for when you did multiples of 2, so move on to 5. The multiples of 5 and 7 show up conveniently in diagonals. This method eliminates all possible composite numbers, leaving only primes behind.

We've already identified every prime less than 121, and it’s easy to go higher and higher this way. We can use a similar technique with our wall problem to eliminate entire groups of numbers at once. A first, critical step is to be deliberate about the number of columns.

If we use 6 again, the numbers in each column will be exactly 6 apart. What that means is that if we identify a number vulnerable to the wall-busters, then all the rest of the column below it would also fall. In other words, because your enemies can make 9, they can make 15, 21, 27, and so on by adding the clowns’ 6-meter machines.

So right away this eliminates 6, 9 and 20, and everything under them. We’ve accounted for the 6’s with the columns, so we can focus on combinations of 20’s and 9’s to eliminate more options. Your rivals can easily make 20 plus 9 and 20 plus 20 and everything below.

Using this approach, we could have eliminated the 70, 71, and 72, and infinitely many other options without having to do any calculations. In the remaining column there are no multiples of 9 or 20, but 49 jumps out, as 2 times 20 plus 9.

There's no way to make 43, so that must be the largest wall segment that your enemies can’t destroy. And there you have it. You plug 43 into the wall fabricator, and after a tense night, the sun rises on your now impregnable fortress and a herd that won’t become unhappy meals.

More Articles

View All
Worked example: sequence explicit formula | Series | AP Calculus BC | Khan Academy
If a_sub_n is equal to (n^2 - 10) / (n + 1), determine a_sub_4 + a_sub_9. Well, let’s just think about each of these independently. a_sub_4, let me write it this way: a the fourth term. So a_sub_4, so our n, our lowercase n, is going to be four. It’s go…
Exceptions to the octet rule | AP Chemistry | Khan Academy
In this video, we’re going to start talking about exceptions to the octet rule, which we’ve talked about in many other videos. The octet rule is this notion that atoms tend to react in ways that they’re able to have a full outer shell; they’re able to hav…
Decimal multiplication place value
This is an exercise from Khan Academy. It tells us that the product 75 times 61 is equal to 4575. Use the previous fact to evaluate as a decimal this right over here: 7.5 times 0.061. Pause this video and see if you can have a go at it. All right, now le…
Judging outliers in a dataset | Summarizing quantitative data | AP Statistics | Khan Academy
We have a list of 15 numbers here, and what I want to do is think about the outliers. To help us with that, let’s actually visualize the distribution of actual numbers. So let us do that. Here on a number line, I have all the numbers from one to 19. Let’…
The Moment kurzgesagt Changed Forever
Hey you, so nice of you to join us! We want to tell you about something that changed kurzgesagt forever. Kurzgesagt started out as a small-scale passion project. But creating animated science videos that are free for everyone doesn’t pay the bills – DAMN …
Warren Buffett: How to Make Money During Inflation
Are you seeing signs of inflation beginning to increase? We’re seeing very substantial inflation. It’s very interesting. I mean, we’re raising prices, people are raising prices to us; it’s being accepted. I mean, inflation is a big concern for everyone ri…